• Title/Summary/Keyword: Pellets

Search Result 858, Processing Time 0.023 seconds

Development of a Combustor in Portable Pellet Stoves Using Wood Pellets to Improve Combustion Efficiency and to Reduce Carbon Monoxide (CO) Emission (목재 펠릿(pellet)을 활용하는 휴대용 펠릿 난로의 연소 효율 향상과 일산화탄소(CO) 배출 저감을 위한 연소기 개발)

  • Min, Kyoung-Soon;Lim, Dae-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.315-320
    • /
    • 2020
  • Pellets are manufactured using wood by-products. The combustion efficiency of pellets depends on the pellet manufacturing process, the types of materials mixed while manufacturing and the wood pellet stoves themselves. In this study, we developed a multi-layer combustor to be used in a wood pellet stove, for the purpose of reducing environmental pollution and energy waste due to incomplete combustion. The multi-layer combustor was designed to compensate for the shortcomings of existing combustors. A CAD (Computer Aided Design) model was verified using a 3D printer and a prototype was developed. The combustion experiments were conducted on commercial and proposed combustors using pellets of the same brand, manufacturing date, place and specifications. From the experiments, it was found that the proposed combustor produced the lowest carbon monoxide (CO) emission and highest thermal efficiency.

Corona Discharge and Strong Electrolyzed Water Generation Characteristics of the Electrode System Bedded by Dielectric Pellets (유전체구 충진형 전극계의 코로나방전과 강전해수 발생특성)

  • 김진규
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.46-54
    • /
    • 2002
  • A dielectric pellets bedded parallel plates with a membrane centered have been proposed as an ion separation and collection system in water. and effects of the relative dielectric constant and the applied square wave pulse voltage on the characteristics of ion separation and collection in tap water and NaCl dissolved tap water have been investigated. As a result, electrolyzed water of pH 3.1 and 10.6 were obtained with only tap water at the pulse current of 1.0[A] and flow rate of 0.5[LPM]. And the higher ionized water of pH 2.8 and pH 11.7 ware obtained in 0.1[%wt] NaCl dissolved water. When the dielectric pellets of BaTiO$_3$ having the highest dielectric constant were bedded in the ion separation and collection cell, the ionized water of pH 2.7 and pH 11.7 were obtained with only tap water. And the ionized water of pH 2.4 and pH 12.0 were obtained in 0.1[wt%] NaCl dissolved tap water with the dielectrics pellets bedded ones.

A Study on Emission Characteristics of Air Pollutants from the use of Solid Fuel (고체연료 사용에 따른 오염물질 배출특성 조사연구)

  • Kim, Jong-Hyeon;Heo, Sun-hwa;Kim, Hyung-Chun;Jo, Myeong-ran;Lim, Seungy-oung;Lee, Sang-Bo;Kang, Dae-il
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.2
    • /
    • pp.77-86
    • /
    • 2017
  • Globally, use of affordable fuels such as briquettes, woods and wood pellets has increased. Organic pollutants emitted from non-point sources using solid fuels may have contributed to air pollution in urban environment. In this study, we utilized simulated incinerator proposed by U.S. EPA and investigated concentrations of PM, $PM_{10}$, $PM_{2.5}$, OC/EC, CO, $SO_x$, $NO_x$, VOCs and PAHs emitted while cooking meat and fish using briquettes, woods and wood pellets, and developed emission factors. As a result, wood combustion produced more air pollutants than the others. Particulate matter emission factors for woods and wood pellets were 13.54 g/kg and 9.15 g/kg, respectively. Total VOCs emission factors for briquettes, woods and wood pellets were 36.12mg/kg, 46.13mg/kg and 18.26mg/kg, respectively. Additionally, total PAHs emission factors for briquette, woods and wood pellets were 0.44 mg/kg, 18.84mg/kg and 101.62mg/kg, respectively.

The Study on the Characteristics of Pellets Manufactured with Morphologically Different Domestic Larix Kaemferi Carr Sawdust (국내산 낙엽송의 톱밥 유형에 따른 펠릿특성에 관한 연구)

  • Ryu, Jae-Yun;Kang, Chan-Young;Lee, Eung-Su;Seo, Jun-Won;Lee, Hyun-Jong;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.49-55
    • /
    • 2010
  • morphologically different Larix Kaemferi Carr sawdust. The pellet characteristics included moisture contents satisfied the first grade (less than 10%) of quality standard of wood pellets announced by Korea Forest Research Institute. Densities were also adequate for the first grade (640kg/$m^3$) on the quality standard and there was no large difference in other characteristics of pellets, however, pellets manufactured with planer shavings had the highest density. Ash contents also passed the first grade (less than 0.7) of quality standard. But bark pellet exceeded the second grade (1.5%) in ash content. Lower absorption ratio of bark pellet showed the effect on hygroscpicity. The heating value of the manufactured wood pellets in this study exceeded the first grade of quality standard(more than 4,300 kcal/kg).

Characterization for Electrical Properties of Sintered 20mol% Gd-doped CeO$_2$ Electrolyte (20mol% Gd-doped 소결체 CeO$_2$ 전해질의 전기적 특성분석)

  • 김선재;국일현
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.1
    • /
    • pp.97-105
    • /
    • 1998
  • 20mol% Gd-doped CeO2 ultrafine powders as a promising electrolyte for the low temperature solid ox-ide fuel cells were synthesized with particle sizes of 15-20 nm using glycine nitrate process(GNP) fol-lowed by sintering their pellets at 150$0^{\circ}C$ for various times in air and then the electrical properties of the sintered pellets were investigated. The sintering behaviors and electrical properties for the sintered 20 sintered mol% Gd-doped CeO2 pellets were analyzed using dilatometer and SEM and AC two-terminal impedance technique respectively. As the heating temperature increased the synthesized powder had the sintering behaviors to show the start of the significant shrink at temperature of about $700^{\circ}C$ and to show the end of the shrink at the temperature of about 147$0^{\circ}C$. When the pellets were sintered with the vaious times at 150$0^{\circ}C$ the temperatuer which the shrink had been already completed the grain sizes in the sintered 20 mol% Gd-doped GeO2 pellets increased with the increase of the sintering time but their electrical resis-tivities showed the minimum value at the sintering time of 10h. It is due that the pellet sintered for 10h had the minimum activation energy fior the electtrical conduction. Thus it is thought that the decrease of the activation energy with the increase of the sintering time to 10h is induced by the enhanced mi-crostructure like the decrease of pore amount and the grain growth and its increase with the sintering times more than 10h is induced by the increase of the amounts of the impurities such as Mg. Al and Si from the sintering atmosphere.

  • PDF

Effect of Dielectrics on NOx Removal of Metal Particle-AI2O3 Barrier Reactor (금속파티클-AI2O3Barrier 반응기의 NOx 제거에 미치는 유전체 영향)

  • 박재윤;김종석;고희석;김형만;배명환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.247-252
    • /
    • 2003
  • In this paper, we made four types of metal particle $Al_2$O$_3$ barrier reactors with and without dielectric of BaTiO$_3$ between metal particle and $Al_2$O$_3$ barrier to investigate NOx removal characteristic and the effect of dielectric on Nox removal. And Nox removal rate is measured when sludge pellets are put at down stream of plasma reactor. Nox removal rate in the reactor with $Al_2$O$_3$ barrier is much better than that in the reactor without $Al_2$O$_3$ barrier, Nox removal rate is not so good in metal particle-Al$_2$O$_3$ barrier reactor with BaTiO$_3$ between metal particle and $Al_2$O$_3$ barrier, however, Nox removal rate is about 40% in metal particle-Al$_2$O$_3$ barrier reactor with TiO$_2$. The most of NO is conversed to NO$_2$ in these kind of reactor. When sludge pellets are put at down stream of plasma reactor, Nox removal rate is greatly improved up to 90%. It indicates that sludge pellets have great effect on the NO$_2$ removal and the improvement of Nox removal rate, however, dielectric materials between metal particle and $Al_2$O$_3$ barrier have not effect. Organic materials included in sludge may react with NO$_2$ and ozone so that Nox removal rate is greatly improved.

MODAL TESTING AND MODEL UPDATING OF A REAL SCALE NUCLEAR FUEL ROD

  • Park, Nam-Gyu;Rhee, Hui-Nam;Moon, Hoy-Ik;Jang, Young-Ki;Jeon, Sang-Youn;Kim, Jae-Ik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.821-830
    • /
    • 2009
  • In this paper, modal testing and finite element modeling results to identify the modal parameters of a nuclear fuel rod as well as its cladding tube are discussed. A vertically standing full-size cladding tube and a fuel rod with lead pellets were used in the modal testing. As excessive flow-induced vibration causes a failure in fuel rods, such as fretting wear, the vibration level of fuel rods should be low enough to prevent failure of these components. Because vibration amplitude can be estimated based on the modal parameters, the dynamic characteristics must be determined during the design process. Therefore, finite element models are developed based on the test results. The effect of a lumped mass attached to a cladding tube model was identified during the finite element model optimization process. Unlike a cladding tube model, the density of a fuel rod with pellets cannot be determined in a straightforward manner because pellets do not move in the same phase with the cladding tube motion. The density of a fuel rod with lead pellets was determined by comparing natural frequency ratio between the cladding tube and the rod. Thus, an improved fuel rod finite element model was developed based on the updated cladding tube model and an estimated fuel rod density considering the lead pellets. It is shown that the entire pellet mass does not contribute to the fuel rod dynamics; rather, they are only partially responsible for the fuel rod dynamic behavior.

An Economic Analysis of the Extruded Pellets on the Olive Flounder Paralichthys olivaceus Farms in the Jeju Region (제주지역 넙치(Paralichthys olivaceus) 양식업의 경제성 분석: 배합사료 공급 양식어가를 중심으로)

  • Kim, Nam-Lee;Han, Hyun-Sob;Lee, Seung-Han;Kim, Kang-Woong;Kim, Do-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.681-687
    • /
    • 2022
  • The government has implemented a policy to promote the use of extruded pellets in sustainable aquaculture by protecting fishery resources and managing the ocean environment. A survey on the production status and the cost of targeting olive flounder Paralichthys olivaceus culture farms in Jeju Island using extruded pellets was conducted. The survey results were used to examine the profitability and economic feasibility of the test farms, as well as the degree of increase in profitability and economic feasibility of the fish farms receiving government subsidies for employing extruded pellets. The economic feasibility was predicted through a sensitivity analysis of prices and production, which are the variable factors when of using the extruded pellets. Using the economic feasibility analysis, the average NPV (Net Present Value) and IRR (Internal Rate of Return) of sample farms were found to be KRW 5.8 billion and 8.9%, respectively. The result of the economic feasibility analysis of the government subsidy showed a maximum average of about 2.3 times higher NPV and a 3.8% increase in IRR in cases where government subsidies were received.

Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Sung, Yong Joo;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Yim, Hyun-Tek;Lee, Min-Seok;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.

Analysis of Reducing Characteristics of Direct Reduced Iron using Blast Furnace Dust

  • Yun, Young Min;Chu, Yong Sik;Seo, Sung Kwan;Jeong, Jae Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.444-449
    • /
    • 2016
  • Industrial by-products generated by integrated iron and steel manufacture cause environmental pollution. The by-products contain not only iron element but also harmful substances. Therefore, in view of to waste recycling and environmental preservation, production of sponge iron using the by-product is considered an effective recycling method. In this study, reduction efficiency of pellets from blast furnace dust was measured. Metallization was found to be increased, as $C/Fe_{total}$ ratio and reaction time were increased. The pellets were formed into a globular shape, and calcined for 60 minutes at $1100^{\circ}C$ in an electric furnace. Phase changes were analyzed using an X-ray diffractometer. Microstructures of the pellets were observed by a scanning electron microscope.