• Title/Summary/Keyword: Peg-in-Hole Task

Search Result 23, Processing Time 0.027 seconds

Compliance Analysis for Effective Peg-In-Hole Task (팩인홀 작업을 효율적으로 수행하기 위한 컴플라이언스 해석)

  • Kim, Byeong-Ho;Lee, Byeong-Ju;Seo, Il-Hong;O, Sang-Rok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.181-188
    • /
    • 2000
  • This paper deals with an analysis of the compliance characteristic for effective peg-in-hole task using robot hand without inter-finger coupling. We first observe the fact that some of coupling stiffness elements cannot be planned arbitrary. next we classify the task of inserting a peg-in-a-hole into two contact styles between the peg and the hole. Then we analyze the conditions of the specified stiffness matrix in the operational space to successfully and more effectively achieve the give peg-in-hole task for each case. It is concluded that the location of compliance center on the peg and the coupling stiffness element existing between the translational and the rotational direction play important roles for successful peg-in-hole task. Simulation results are included to verify the feasibility of the analytic results.

  • PDF

The Output Analysis of Wrist Force/ Torque Sensor for SCARA Type Robots (SCARA형 로보트를 위한 손목 힘/토오크 센서의 출력 해석)

  • 고명삼;하인중;이범희;고낙용
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.8
    • /
    • pp.570-578
    • /
    • 1988
  • In order for a robot to carry out a precise assembly task with compliant motion, a force/torque sensor is needed. The output of the cross-bar structured force / torque sensor which is used in a peg-in-hole insertion task and attached to a SCARA type robot, is analzed. First, the relationship between the sensor outputs and the force / torque components obtained by the outputs is investigated. Second, in a peg-in-hole insertion task, the sensor outputs changing with the contact position of the peg and the hole, are analyzed. Also, the relative position of the peg and the hole is obtained from the sensor outputs. The peg-in-hole insertion task is successfully executed, using a SCARA type robot with a wrist force / torque sensor manufactured in our laboratory and the compliance algorithm from the results of this paper.

  • PDF

Robotic Peg-in-Hole Assembly by Hand Arm Coordination (손과 팔의 협업에 의한 로봇 펙인홀 작업)

  • Park, Hyeonjun;Kim, Peter Ki;Park, Jaeheung;Jang, Ja-Ram;Shin, Yong-Deuk;Bae, Ji-Hun;Park, Jae-Han;Baeg, Moon-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.42-51
    • /
    • 2015
  • Peg-in-hole assembly is the most representative task for a robot to perform under contact conditions. Various strategies for accomplishing the peg-in-hole task with a robot exist, but the existing strategies are not sufficiently practical to be used for various assembly tasks in a human environment because they require additional sensors or exclusive tools. In this paper, the peg-in-hole assembly experiment is performed with anthropomorphic hand arm robot without extra sensors or devices using "intuitive peg-in-hole strategy". From this work, the probability of applying the peg-in-hole strategy to a common assembly task is verified.

Teleoperated Microassembly and its Application to Peg-in-Hole Task

  • Kim, Deok-Ho;Kim, Yoon-Kyong;Kim, Kyunghwan;Won Choe
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.103.4-103
    • /
    • 2001
  • This paper presents a scaled teleoperation scheme for 3-D microassembly on the experimental microassembly workcell. A workspace mapping between a master and a slave microrobot system is presented to teleoperatively control the microrobot system for microassembly such as peg-in-hole task. Based on this result, a scaling factor is designed and applied to the teleoperated micromanipulation for peg-in-hole task in a mesoscale. Using 3-D virtual simulator, the workspace of microrobot system, and the working path trajectory for microassembly is visually represented. The proposed method is validated through the execution of 3-D microassembly such as peg-in-hole task on the experimental microassembly workcell. The proposed method in the developed ...

  • PDF

Precise assembly task using sensor fusion technology (센서퓨젼 기술을 이용한 정밀조립작업)

  • 이종길;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.287-292
    • /
    • 1993
  • We use three sensors such as a vision sensor, a proximity sensor, and a force/torque sensor fused by fuzzy logic in a peg-in-hole task. The vision and proximity sensors are usually used for gross motion control and the information is used here to position the peg around the hole. The force/torque sensor is used for fine motion control and the information is used to insert the peg into the hole precisely. Throughout the task, the information of all the three sensors is fused by a fuzzy logic controller. Some simulation results are also presented for verification.

  • PDF

Compliance Control of a 3-Link Electro-Hydraulic Manipulator (3축 전기유압 매니퓰레이터의 컴플라이언스 제어)

  • 안경관;표성만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.101-108
    • /
    • 2004
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to obtain stable control performance. In this report, we applied disturbance estimation and compensation type robust control to all axes in a 3-link electro-hydraulic manipulator. From the results of experiment, it was confirmed that the performance of trajectory tracking and attitude regulating is greatly improved by the disturbance observer, which model is the same for each axis. On the other hand, for the autonomous assembly tasks, it is said that compliance control is one of the most available methods. Therefore we proposed compliance control which is based on the position control by disturbance observer for our manipulator system. To realize more stable contact work, the states in the compliance loop are feedback, where not only displacement but also velocity and acceleration are considered. And we applied this compliance control to Peg-in-Hole insertion task and analyzed mechanical relation between peg and hole. Also we proposed new method of shifting the position of end-effector periodically for the purpose of smooth insertion. As a result of using this method, it is experimentally confirmed that Peg-in-Hole insertion task with a clearance of 0.05[mm]can be achieved.

Compliance Control of a 6-tink Electro-Hydraulic Manipulator (6축 전기 유압 매니퓰레이터의 컴플라이언스 제어)

  • 안경관;표성만
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is quite difficult to obtain stable control performance. We have applied a disturbance estimation and compensation type robust control to all the axes in a 6-link electro-hydraulic manipulator. It was confirmed that the performance of trajectory tracking and attitude regulating was greatly improved by the disturbance observer. For autonomous assembly tasks, it is said that compliance control is one of the most popular methods in contact task. We have proposed a compliance control based on the position control by a disturbance observer for our manipulator system. To realize more stable contact work, the states in the compliance loop are feedbacked, where not only displacement but also the velocity and acceleration are considered. We have also applied this compliance control to the Peg-in-Hole insertion task and proposed new methods of (1)rotating of the end-effector periodically in order to reduce the friction force, (2)random searching for the center of a hole and (3)trajectory modification to reduce the impact force. As a result of these new methods, it could be experimentally confirmed that the Peg-in-Hole insertion task with a clearance of 0.007 [mm] could be achieved.

Robotic Assembly Using Configuration and Force/Torque Information of Tactile Sensor System (접촉센서의 형상과 힘/토크 정보를 이용한 로봇조립)

  • 강이석;김근묵;윤지섭;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2315-2327
    • /
    • 1992
  • A robot assembly method which uses configuration and force/torque information of tactile sensor system and performs chamferless peg-in-hole tasks is suggested and experimentally studied. When the robot gripes the peg with random orientation, the realignment of the peg to the hole center line is successfully performed with the gripping configuration information of the tactile sensor and the inverse kinematics of the robot. The force/torque information of the tactile sensor makes it possible to control the contacting force between mating parts during hole search stage. The suggested algorithm employs a hybrid position/force control and the experiments show that the algorithm accomplishes well peg-in-hole tasks with permissible small contacting force. The chamferless peg-in-hole tasks with smaller clearance than the robot repeatibility can be excuted without any loss or deformation of mating parts. This study the possibility of precise and chamferless parts mating by robot and tactile sensor system.

Direct Teaching and Playback Algorithm for Peg-in-Hole Task using Impedance Control (펙인홀 작업을 위한 임피던스 제어 기반의 직접교시 및 재현 알고리즘)

  • Kim, Hyun-Joong;Back, Ju-Hoon;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.538-542
    • /
    • 2009
  • Industrial manipulators have been mostly used in large companies such as automakers and electronics companies. In recent years, however, demands for industrial manipulators from small and medium-sized enterprises are on the increase because of shortage of manpower and high wages. Since these companies cannot hire robot engineers for operation and programming of a robot, intuitive teaching and playback techniques of a robot manipulator should replace the robot programming which requires substantial knowledge of a robot. This paper proposes an intuitive teaching and playback algorithm used in assembly tasks. An operator can directly teach the robot by grasping the end-effector and moving it to the desired point in the teaching phase. The 6 axis force/torque sensor attached to the manipulator end-effector is used to sense the human intention in teaching the robot. After this teaching phase, a robot can track the target position or trajectory accurately in the playback phase. When the robot contacts the environment during the teaching and playback phases, impedance control is conducted to make the contact task stable. Peg-in-hole experiments are selected to validate the proposed algorithm since this task can describe the important features of various assembly tasks which require both accurate position and force control. It is shown that the proposed teaching and playback algorithm provides high positioning accuracy and stable contact tasks.