• Title/Summary/Keyword: Peer-to-peer networks

Search Result 188, Processing Time 0.025 seconds

PECAN: Peer Cache Adaptation for Peer-to-Peer Video-on-Demand Streaming

  • Kim, Jong-Tack;Bahk, Sae-Woong
    • Journal of Communications and Networks
    • /
    • v.14 no.3
    • /
    • pp.286-295
    • /
    • 2012
  • To meet the increased demand of video-on-demand (VoD) services, peer-to-peer (P2P) mesh-based multiple video approaches have been recently proposed, where each peer is able to find a video segment interested without resort to the video server. However, they have not considered the constraint of the server's upload bandwidth and the fairness between upload and download amounts at each peer. In this paper, we propose a novel P2P VoD streaming system, named peer cache adaptation (PECAN) where each peer adjusts its cache capacity adaptively to meet the server's upload bandwidth constraint and achieve the fairness. For doing so, we first propose a new cache replacement algorithm that designs the number of caches for a segment to be proportional to its popularity. Second, we mathematically prove that if the cache capacity of a peer is proportional to its segment request rate, the fairness between upload and download amounts at each peer can be achieved. Third, we propose a method that determines each peer's cache capacity adaptively according to the constraint of the server's upload bandwidth. Against the proposed design objective, some selfish peers may not follow our protocol to increase their payoff. To detect such peers, we design a simple distributed reputation and monitoring system. Through simulations, we show that PECAN meets the server upload bandwidth constraint, and achieves the fairness well at each peer. We finally verify that the control overhead in PECAN caused by the search, reputation, and monitoring systems is very small, which is an important factor for real deployment.

Conferencing Service Interworking in Peer-to-Peer and IMS Networks

  • Sim, Jinsub;Kim, Younghan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2136-2152
    • /
    • 2012
  • The growth of Internet technologies and the widespread use of mobile devices have been paving the way for the increasing use of conferencing services. Two types of systems have been designed to provide conferencing services: 1) a conferencing system using session control over a peer-to-peer (P2P) network and 2) an IP Multimedia Subsystem (IMS) conferencing system. The IMS conferencing system was developed to adapt to a server-based centralized system, whereas the benefits of the P2P operational model in providing such conference services are widely acknowledged. However, each system provides conferencing services only to its own users. Therefore, in this paper, we propose an interworking model to support multimedia conferencing service between the P2P environment and IMS networks. We also introduce protocol architecture and some service scenarios. To verify this system model and the design architecture, we perform an actual implementation and show experienced test results.

Virtual Direction Multicast: An Efficient Overlay Tree Construction Algorithm

  • Mercan, Suat;Yuksel, Murat
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.446-459
    • /
    • 2016
  • In this paper, we propose virtual direction multicast (VDM) for video multicast applications on peer-to-peer overlay networks. It locates the end hosts relative to each other based on a virtualized orientation scheme using real-time measurements. It builds multicast tree by connecting the nodes, which are estimated to be in the same virtual direction. By using the concept of directionality, we target to use minimal resources in the underlying network while satisfying users' quality expectations. We compare VDM against host multicast tree protocol.We simulated the protocol in a network simulator and implemented in PlanetLab. Results both from simulation and PlanetLab implementation show that our proposed technique exhibits good performance in terms of defined metrics.

A Performance Study on The Advanced Peer-to-Peer Network for Broadband Communications (Advanced Peer-to-Peer Network에서의 초고속 통신망의 성능연구)

  • 황명상;류제영;주기호;박두영
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.9-12
    • /
    • 2000
  • In this paper, we carry out a performance study related to the Advanced Peer-to-Peer Network(APPN). For this particular network, it has been proposed to use the leaky bucket as a way of controlling congestion within the network. On the top of leaky bucket type rate based congestion control scheme for high speed networks, a user will typically operate an error control scheme for retransmitting lost and erroneous packets. We propose a Perform ance model in order to study the Interaction between a user's error control scheme and the leaky bucket congestion control scheme for high speed networks. Simulation results show that parameters such as the window size and the token generation rate in the leaky bucket are key factors affecting the end-to-end delay.

  • PDF

An Efficient Replication Scheme in Unstructured Peer-to-Peer Networks (비구조적인 피어-투-피어 네트워크상에서 효율적인 복제기법)

  • Choi Wu-Rak;Han Sae-Young;Park Sung-Yong
    • The KIPS Transactions:PartA
    • /
    • v.13A no.1 s.98
    • /
    • pp.1-10
    • /
    • 2006
  • For efficient searching in unstructured peer-to-peer systems, random walk was proposed and several replication methods have been studied to compensate for the random walk's low query success rate. This paper proposes an efficient replication scheme that improves the accuracy and speed of queries and reduces the cost by minimizing the number of replicas and by utilizing caches. In this scheme, hub nodes store only content's caches, and one of their neighbors stores the replica. By determining hubs with only limited and local information, we can adaptively generate caches and replicas in dynamic peer-to-peer networks.

Efficient Peer-to-Peer Lookup in Multi-hop Wireless Networks

  • Shin, Min-Ho;Arbaugh, William A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.1
    • /
    • pp.5-25
    • /
    • 2009
  • In recent years the popularity of multi-hop wireless networks has been growing. Its flexible topology and abundant routing path enables many types of applications. However, the lack of a centralized controller often makes it difficult to design a reliable service in multi-hop wireless networks. While packet routing has been the center of attention for decades, recent research focuses on data discovery such as file sharing in multi-hop wireless networks. Although there are many peer-to-peer lookup (P2P-lookup) schemes for wired networks, they have inherent limitations for multi-hop wireless networks. First, a wired P2P-lookup builds a search structure on the overlay network and disregards the underlying topology. Second, the performance guarantee often relies on specific topology models such as random graphs, which do not apply to multi-hop wireless networks. Past studies on wireless P2P-lookup either combined existing solutions with known routing algorithms or proposed tree-based routing, which is prone to traffic congestion. In this paper, we present two wireless P2P-lookup schemes that strictly build a topology-dependent structure. We first propose the Ring Interval Graph Search (RIGS) that constructs a DHT only through direct connections between the nodes. We then propose the ValleyWalk, a loosely-structured scheme that requires simple local hints for query routing. Packet-level simulations showed that RIGS can find the target with near-shortest search length and ValleyWalk can find the target with near-shortest search length when there is at least 5% object replication. We also provide an analytic bound on the search length of ValleyWalk.

Using Anycast for Improving Peer-to-Peer Overlay Networks

  • Dao, Le-Hai;Kim, Jong-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06d
    • /
    • pp.183-188
    • /
    • 2007
  • Peer-to-Peer (P2P) overlay networks have drawn much research interest in the past few years because they provide a good substrate for large-scale applications in the Internet. In this paper, we introduce the use of anycast, a new "one-to-one-of-many" communication method in the Internet, to solve the following common problems of P2P overlay networks: load-balancing, topology-awareness, system partitioning, and multi-overlay interconnection. We also give an analysis of the features and limitations of the recently deployed anycast infrastructures in the Internet for supporting P2P overlay networks.

  • PDF

A Distribution Scheme for Continuous Media Contens over Peer-to-Peer Networks (P2P 네트웍에서 연속형 미디어 컨텐츠의 분산형 배포 기법)

  • Kwon Jin Baek;Yeom Heon Young;Lee Jeong Bae
    • The KIPS Transactions:PartA
    • /
    • v.11A no.7 s.91
    • /
    • pp.511-520
    • /
    • 2004
  • A peer-to-peer model is very useful in solving the server link bottleneck problem of a client-server model. In this work, we discuss the problems of distributing multimedia content over peer-to-peer network. We focus on two problems in peer-to-peer media content distribution systems. The first is the transmission scheduling of the media data for a multi-source streaming session. We present a sophisticated scheduling scheme called fixed-length slotted scheduling, which results in minimum buffering delay. The second problem is on the fast distribution of media content in the peer-to-peer system that is self-growing. We propose a mechanism accelerating the speed at which the system's streaming ca-pacity increases, called FAST.

A CDN-P2P Hybrid Architecture with Location/Content Awareness for Live Streaming Services

  • Nguyen, Kim-Thinh;Kim, Young-Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2143-2159
    • /
    • 2011
  • The hybrid architecture of content delivery networks (CDN) and peer-to-peer overlay networks (P2P) is a promising technology enables effective real-time streaming services. It complements the advantages of quality control and reliability in a CDN, and the scalability of a P2P system. With real-time streaming services, however, high connection setup and media delivery latency are becoming the critical issues in deploying the CDN-P2P system. These issues result from biased peer selection without location awareness or content awareness, and can lead to significant service disruption. To reduce service disruption latency, we propose a group-based CDN-P2P hybrid architecture (iCDN-P2P) with a location/content-aware selection of peers. Specifically, a SuperPeer network makes a location-aware peer selection by employing a content addressable network (CAN) to distribute channel information. It also manages peers with content awareness, forming a group of peers with the same channel as the sub-overlay. Through a performance evaluation, we show that the proposed architecture outperforms the original CDN-P2P hybrid architecture in terms of connection setup delay and media delivery time.

An Efficient P2P System Using Cross-Layer Design for MANETs (MANET 에서의 Cross-Layer 디자인을 사용한 효율적인 P2P 시스템)

  • Park, Ho-Hyun;Choi, Hyun-Duk;Woo, Mi-Ae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7B
    • /
    • pp.728-733
    • /
    • 2009
  • An ubiquitous environment has features like peer-to-peer and nomadic environments. Such features can be represented by peer-to-peer systems and mobile ad-hoc networks. P2P systems and MANETs share similar features, appealing for implementing P2P systems in MANET environment. However, if a P2P system designed for wired networks was applied to mobile ad-hoc environment, its performance was not good enough. Subsequently, this paper proposes a P2P system to improve performance using cross-layer design and the goodness of a node as a peer by using routing metric and P2P metric to choose favorable peers to connect. It also utilizes proactive approach for distributing peer information. The simulation results showed that the proposed system produced better performance in query success rate, query response time and energy consumption by reducing the routing path length.