• Title/Summary/Keyword: Peel bond strength

Search Result 29, Processing Time 0.022 seconds

Peel strength of denture liner to PMMA and polyamide: laser versus air-abrasion

  • Korkmaz, Fatih Mehmet;Bagis, Bora;Ozcan, Mutlu;Durkan, Rukiye;Turgut, Sedanur;Ates, Sabit Melih
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.287-295
    • /
    • 2013
  • PURPOSE. This study investigated the effect of laser parameters and air-abrasion on the peel strength of silicon-based soft denture liner to different denture resins. MATERIALS AND METHODS. Specimens (N=180) were prepared out of three different denture base resins (Rodex, cross-linked denture base acrylic resin; Paladent, heat-cured acrylic resin; Deflex, Polyamide resin) ($75mm{\times}25mm{\times}3mm$). A silicon-based soft denture liner (Molloplast B) was applied to the denture resins after the following conditioning methods: a) Air-abrasion ($50{\mu}m$), b) Er,Cr:YSGG laser (Waterlase MD Turbo, Biolase Technology) at 2 W-20 Hz, c) Er,Cr:YSGG laser at 2 W-30 Hz, d) Er,Cr:YSGG laser at 3 W-20 Hz, e) Er,Cr:YSGG laser at 3 W-30 Hz. Non-conditioned group acted as the control group. Peel test was performed in a universal testing machine. Failure modes were evaluated visually. Data were analyzed using two-way ANOVA and Tukey's test (${\alpha}$=.05). RESULTS. Denture liner tested showed increased peel strength after laser treatment with different parameters ($3.9{\pm}0.4-5.58{\pm}0.6$ MPa) compared to the control ($3.64{\pm}0.5-4.58{\pm}0.5$ MPa) and air-abraded groups ($3.1{\pm}0.6-4.46{\pm}0.3$ MPa), but the results were not statistically significant except for Paladent, with the pretreatment of Er,Cr:YSGG laser at 3 W-20 Hz. Polyamide resin after air-abrasion showed significantly lower peel strength than those of other groups ($3.1{\pm}0.6$ MPa). CONCLUSION. Heat-cured acrylic resin, PMMA, may benefit from Er,Cr:YSGG laser treatment at 3 W-20 Hz irradiation. Air-abrasion of polyamide resins should be avoided not to impair their peel bond strengths to silicon-based soft denture liners.

Evaluation of bonding efficiency between facial silicone and acrylic resin using different bonding agents and surface alterations

  • Shetty, Uttam Sadashiv;Guttal, Satyabodh Shesharaj
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.3
    • /
    • pp.121-126
    • /
    • 2012
  • PURPOSE. The aim of the study was to evaluate the effect of 3 silicone primers and 3 surface characterization of acrylic resin surface on bond strength between silicone elastomer and acrylic resin. MATERIALS AND METHODS. 96 Cosmesil silicones bonded to heat-curing acrylic resin were fabricated with the dimension of $75{\times}10{\times}3$ mm. The 3 primers used in this study were G611 platinum primer, A-330 Gold platinum primer, and cyanoacrylates resin. Specimens without primer were used as control. The 3 types of surface characterization done were retentive holes with 1.5 mm in diameter and 0.5 mm deep, retentive beads of 0.6 mm diameter and the third type which was plain without any characterization. The specimens were then checked for bond strength by subjecting them to $180^{\circ}$ peel test on a universal testing machine. The obtained results were then subjected to statistical analysis using 2-way ANOVA and Scheff$\acute{e}$ multiple post hoc procedures. The statistical significance was set at 5% level of significance. RESULTS. The maximum bond strength was seen for samples in which A-330G primer was used followed by G611 primer. The control group showed the minimum bond strength. Surface characterization of retentive holes increased the bond strength considerably as compared to retentive beads and samples without any surface characterization. CONCLUSION. Within the limitations of the study, A-330G primer was more compatible with Cosmesil M511 silicone and has better bonding of Cosmesil to acrylic resin. Retentive holes made on acrylic surface increased the bond strength considerably than those without any surface characterization.

Study About Measurement of Interfacial Bonding Strength of STS/Al Clad sheet by Blanking Process (블랭킹 공정을 이용한 STS/Al 클래드 판재의 계면 접합력 측정에 관한 연구)

  • Kim, T.H.;Lee, K.S.;Kim, J.H.;Moon, Y.H.;Lee, Y.S.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.267-275
    • /
    • 2018
  • The clad sheet material is produced by a roll-bonding process of one or more materials with different properties. Good formability of clad sheet material is an essential property in to deform a clad metal sheet into a part or component. Performance of the clad sheet material largely depends on interfacial bond strength between different materials. In this study, interfacial bond strength of STS/Al clad sheet was analyzed by varying experimental parameters using a blanking process. Experimental parameters are the punching speed, clearance, and stacking order of plate materials. In addition, blanking test results were compared with bond strengths measured by the T-peel test, that analyzes interface bonding strength of the standard clad sheet. The blanking process was analyzed by the finite element method under the sticking condition of interface of different materials, and experimental results and analysis results were compared.

A Study of the appraisal for adhesive stability classified by tile bond agent on the dry wall surface (건식벽체에서 접착제 종류에 따른 타일부착 안전성 평가에 관한 연구)

  • Um Chan-Young;Sun Yoon-Suk;Kwon Shi-Won;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.173-178
    • /
    • 2005
  • The tile construction methods for existing have been used materials within limit which adhesion by wet method in masonry wall and concrete structure. These existing adhesive tech can caused many problems in construction of large and reform tile, after that it can be happened loose scale, peel off, falling off tile by heat and vibration or impact. In according to, this study is to test tile for bond stability, adhesive property by impact, vibration. low property by heat and then, we have the results as below; (1) The tile adhesive stability can be effected as adhesive area between bond agent and tile, adhesive area can more wide and press enough to ensure property. (2) Existing adhesive strength and standard relative tile construction is limited to adjust performance tile on the concrete and masonry wall. In summary, It is necessary to establish standard of performance and test method to ensure tile adhesive salability in dry wall.

  • PDF

Improvement of Binding Property of the Alg-Na/PEO Blends (PEO를 이용한 Alg-Na 바인더의 물성향상)

  • Park, Yong Wan;Kim, Eui Hwa;Cho, Ho Hyun
    • Textile Coloration and Finishing
    • /
    • v.26 no.1
    • /
    • pp.32-38
    • /
    • 2014
  • There has been increasing demand to the eco-friendly materials such as phytoncide which is extracted to plants in the textile industry, recently. It is interesting that alginic acid sodium salt(Alg-Na) is used to eco-friendly binder for the functional capsule finishing. In this study, we made PEO/Alg-Na blend solutions of various ratio and observed the changing binding property of the blend solutions according to PEO contents through FT-IR, DSC, contact angle, peel strength, etc. The viscosity of Alg-Na/PEO blend solutions increased with increase of contents and the viscosity quickly increased with increase of PEO content in Alg-Na 5% content, specially. It is shown that the hydrogen bond peak by blend of Alg-Na and PEO found through FT-IR analysis but the peak decreased in PEO above 60% content. And the peel strength was predominant in PEO 50% ratio.

Synthesis and Analysis of Multi-functional Urethane Acrylate Monomer, and its Application as Curing Agent for Poly(phenylene ether)-based Substrate Material (다관능 우레탄 아크릴레이트 단량체의 합성과 분석, 및 폴리페닐렌에테르 기판소재용 경화성분으로의 적용)

  • Kim, Dong-Kook;Park, Seong-Dae;Oh, Jin-Woo;Kyoung, Jin-Bum
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.413-419
    • /
    • 2012
  • Multi-functional urethane acrylate monomers as the curing agent of poly(phenylene ether) (PPE) were synthesized and then the urethane bond formation was checked by FTIR spectrometry and NMR analysis. The synthesized monomers were mixed with PPE and fabricated to dielectric substrates. After forming PPE/monomer composite sheets by a film coater, several sheets were laminated to a test substrate in a vacuum laminator and then its properties depending on the type and the amount of monomers, such as dielectric constant, dielectric loss, and peel strength, were measured. Between the two different hydroxyl acrylates, when the monomer synthesized with 2-hydroxy-3-phenoxypropyl acrylate containing a phenyl group was used as a curing agent, a smaller dielectric loss was obtained and the dielectric constant and loss decreased with a decrease in the amount of the monomer. The peel strength values of the test substrates, however, did not show any specific difference between the cases of two synthesized monomers. As a result, it was obtained the polymer substrate for high frequency application having peel strength of about 10 N, low dielectric constant of 2.54, and low dielectric loss of 0.0027 at 1 GHz.

Effects of Bonding Conditions on Joint Property between FPCB and RPCB using Thermo-Compression Bonding Method (열압착법을 이용한 경.연성 인쇄회로기판 접합부의 접합 강도에 미치는 접합 조건의 영향)

  • Lee, Jong-Gun;Ko, Min-Kwan;Lee, Jong-Bum;Noh, Bo-In;Yoon, Jeong-Won;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.63-67
    • /
    • 2011
  • We investigated effects of bonding conditions on the peel strength of rigid printed circuit board (RPCB)/ flexible printed circuit board (FPCB) joints bonded using a thermo-compression bond method, The electrodes on the FPCB were coated with Sn by a dipping process. We confirmed that the bonding temperature and bonding time strongly affected the bonding configuration and strength of the joints. Also, the peel strength is affected by dipping conditions; the optimum dipping condition was found to be temperature of $270^{\circ}C$ and time of 1s. The bonding strength linearly increased with increasing bonding temperature and time until $280^{\circ}C$ and 10s. The fracture energy calculated from the F-x (Forcedisplacement) curve during a peel test was the highest at bonding temperature of $280^{\circ}C$.

Effect of Weldbond Process on the Weldability of 1.2GPa Grade Galvannealed TRIP Steel for Car Body Manufacturing (차체용 1.2GPa급 합금화아연도금 TRIP강의 용접성에 미치는 Weldbond 공정의 효과)

  • Lee, Jong-Dae;Lee, Hye-Rim;Kim, Mok-Soon;Seo, Jong-Deok;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.28-34
    • /
    • 2016
  • Galvannealed(GA) steels are now generally used in car body manufacturing for corrosion resistance. In this study, the weldability and joint mechanical behavior of a newly developed 1.2GPa grade GA ultra high strength TRIP(transformation induced plasticity) steel was investigated for three joining processes, such as adhesive bonding, resistance spot welding and weldbonding. Under both shear and peel stress conditions, the failure mode of the adhesive joints were the mixture of the adhesive cohesive failure, adhesive interface failure and coating layer failure. It means that the adhesion strength of GA coating onto the base metal was similar to that of adhesive bonding onto the GA coating. Under the shear stress condition, the weldbonding exerted to expand the optimal spot welding condition of 1.2GPa GA TRIP steel because the strength of adhesive bond overwhelmed that of the resistance spot weld. Under the peel stress condition, the weldbonding also exerted to expand the optimal spot welding condition of 1.2GPa GA TRIP steel by inducing the tear fracture mode rather than the partial plug fracture mode.

A Study on the Roll Manufacturing Technology Applying Powder Flame Spray Coating Technology of Ni-Based Alloy Powder (Ni계 합금분말 용사 코팅기술을 적용한 롤 제조기술 연구)

  • Park, Ji Woong;Kim, Soon Kook;Ban, Gye Bum
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.123-131
    • /
    • 2022
  • The purpose of this study is to improve the mechanical properties and develop manufacturing technology through self-soluble alloy powder flame spray coating on the surface of a run-out table roller for hot rolling. The roller surface of the run-out table should maintain high hardness at high temperatures and possess high wear, corrosion, and heat resistances. In addition, sufficient bonding strength between the thermal spray coating layer and base material, which would prevent the peel-off of the coating layer, is also an important factor. In this study, the most suitable powder and process for roll manufacturing technology are determined through the initial selection of commercial alloy powder for roll manufacturing, hardness, component analysis, and bond strength analysis of the powder and thermal spray coating layer according to the powder.

Performance Evaluation of RC Slabs Strengthened by Stiff Type PolyUrea (경질형 폴리우레아로 보강된 RC 슬래브의 성능 평가)

  • Park, Jeong Cheon;Lee, Sang Won;Kim, Sung Bae;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.457-464
    • /
    • 2011
  • An experimental study was performed to evaluate the possibility of using stiff type PolyUrea(PU) on RC slab as a strengthening material. Stiff type PU(STPU) was sprayed on the bottom surface of the slab specimens, which were then attached with CFRP or GFRP sheets. Also the evaluation of the bond capacity, the single most influential parameter on strengthening of RC structures, was carried out the flexural capacity evaluation test results showed that the load carrying capacity of the PU specimen was greater and less than the unstrengthened and FRP sheet attached specimens, respectively. The STPU specimens showed a ductile flexural behavior in the plastic displacement range. With respect to bond capacity, the bond strength of all of the specimen exceeded the code required bond strength of 1.5 MPa. Also, the STPU sprayed specimen without using epoxy resin did not peel off when the tensile grip was applied for testing. The stability of the PU bond failure indicate a good bond strength of PU when applied to concrete.