• Title/Summary/Keyword: Pedicle Screw

Search Result 128, Processing Time 0.024 seconds

Comparison of Posterior Fixation Alone and Supplementation with Posterolateral Fusion in Thoracolumbar Burst Fractures

  • Hwang, Jong-Uk;Hur, Jin-Woo;Lee, Jong-Won;Kwon, Ki-Young;Lee, Hyun-Koo
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.4
    • /
    • pp.346-352
    • /
    • 2012
  • Objective : We compared the radiological and clinical outcomes between patients who underwent posterior fixation alone and supplemented with fusion following the onset of thoracolumbar burst fractures. In addition, we also evaluated the necessity of posterolateral fusion for patients treated with posterior pedicle screw fixation. Methods : From January 2007 to December 2009, 46 consecutive patients with thoracolumbar burst fracture were included in this study. On the basis of posterolateral fusion, we divided our patients into the non-fusion group and the fusion group. The radiological assessment was performed according to the Cobb's method, and results were obtained at immediately, 3, 6, 12 months after surgery. The clinical outcomes were evaluated using the modified Mcnab criteria at the final follow-up. Results : The demographic data and the mean follow-up period were similar between the two groups. Patients of both groups achieved satisfactory clinical outcomes. The mean loss of kyphosis correction showed that patients of both groups experienced loss of correction with no respect to whether they underwent the posterolateral fusion. There was no significant difference in the degree of loss of correction at any time points of the follow-up between the two groups. In addition, we also compared the effect of fixed levels (i.e., short versus long segment) on loss of correction between the two groups and there was no significant difference. There were no major complications postoperatively and during follow-up period. Conclusion : We suggest that posterolateral fusion may be unnecessary for patients with thoracolumbar burst fractures who underwent posterior pedicle screw fixation.

What are the Differences in Outcome among Various Fusion Methods of the Lumbar Spine?

  • Kang, Suk-Hyung;Kim, Young-Baeg;Park, Seung-Won;Hong, Hyun-Jong;Min, Byung-Kook
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.1
    • /
    • pp.39-43
    • /
    • 2005
  • Objective: For Posterior lumbar interbody fusion(PLIF) various cages or iliac bone dowels are used with or without pedicle screw fixation(PSF). To evaluate and compare the clinical and radiological results of different fusion methods, we intend to verify the effect of added PSF on PLIF, the effect of bone cages and several factors which are thought to be related with the postoperative prognosis. Methods: One hundred and ninety seven patients with lumbar spinal stenosis and instability or spondylolisthesis underwent various fusion operations from May 1993 to May 2003. The patients were divided into five groups, group A (PLIF with autologous bone dowels, N=24), group B (PLIF with bone cages, N=13), group C (PLIF with bone dowels and PSF, N=37), group D (PLIF with bone cages and PSF, N=30) and group E (PSF with intertransverse bone graft, N=93) for comparison and analyzed for the outcome and fusion rate. Results: Outcome was not significantly different among the five groups. In intervertebral height (IVH) changes between pre- and post-operation, Group B ($2.42{\pm}2.20mm$) was better than Group A ($-1.33{\pm}2.05mm$). But in the Group C, D and E, the IVH changes were not different statistically. Fusion rate of group C, D was higher than that of Group A and B. But the intervertebral height(IVH) increased significantly in group B($2.42{\pm}2.20mm$). Fusion rate of group C and D were higher than that of group A and D. Conclusion: Intervertebral cages are superior to autologous iliac bone dowels for maintaining intervertebral height in PLIF. The additional pedicle screw fixation seems to stabilize the graft and improve fusion rates.

Bone Cement Augmentation of Short Segment Fixation for Unstable Burst Fracture in Severe Osteoporosis

  • Kim, Hyeun-Sung;Park, Sung-Keun;Joy, Hoon;Ryu, Jae-Kwang;Kim, Seok-Won;Ju, Chang-Il
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.1
    • /
    • pp.8-14
    • /
    • 2008
  • Objective : The purpose of this study was to determine the efficacy of short segment fixation following postural reduction for the re-expansion and stabilization of unstable burst fractures in patients with osteoporosis. Methods : Twenty patients underwent short segment fixation following postural reduction using a soft roll at the involved vertebra in cases of severely collapsed vertebrae of more than half their original height. All patients had unstable burst fracture with canal compromise, but their motor power was intact. The surgical procedure included postural reduction for 2 days and bone cement-augmented pedicle screw fixations at one level above, one level below and the fractured level itself. Imaging and clinical findings, including the level of the vertebra involved, vertebral height restoration, injected cement volume, local kyphosis, clinical outcome and complications were analyzed. Results : The mean follow-up period was 15 months. The mean pain score (visual analogue scale) prior to surgery was 8.1, which decreased to 2.8 at 7 days after surgery. The kyphotic angle improved significantly from $21.6{\pm}5.8^{\circ}$ before surgery to $5.2{\pm}3.7^{\circ}$ after surgery. The fraction of the height of the vertebra increased from 35% and 40% to 70% in the anterior and middle portion. There were no signs of hardware pull-out, cement leakage into the spinal canal or aggravation of kyphotic deformities. Conclusion : In the management of unstable burst fracture in patients with severe osteoporosis, short segment pedicle screw fixation with bone cement augmentation following postural reduction can be used to reduce the total levels of pedicle screw fixation and to correct kyphotic deformities.

A Morphometric Analysis of Neuroforamen in Grade I Isthmic Spondylolisthesis by Anterior Lumbar Interbody Fusion with Pedicle Screw Fixation

  • Lee, Dong-Yeob;Lee, Sang-Ho;Kim, Seok-Kang;Maeng, Dae-Hyeon;Jang, Jee-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.6
    • /
    • pp.377-381
    • /
    • 2007
  • Objective : The aim of this study was to evaluate the morphometric changes in neuroforamen in grade I isthmic spondylolisthesis by anterior lumbar interbody fusion [ALIF]. Methods : Fourteen patients with grade I isthmic spondylolisthesis who underwent single level ALIF with percutaneous pedicle screw fixation were enrolled. All patients underwent standing lateral radiography and magnetic resonance imaging [MRI] before surgery and at 1 week after surgery. For quantitative analysis, the foraminal height, width, epidural foraminal height, epidural foraminal width, and epidural foraminal area were evaluated at the mid-portion of 28 foramens using T2-weighted sagittal MRI. For qualitative analysis, degree of neural compression in mid-portion of 28 foramens was classified into 4 grades using T2-weighted sagittal MRI. Clinical outcomes were assessed using Visual Analogue Sale [VAS] scores for leg pain and Oswestry disability index before surgery and at 1 year after surgery. Results : The affected levels were L4-5 in 10 cases and L5-S1 in 4. The mean foraminal height was increased [p<0.001], and the mean foraminal width was decreased [p=0.014] significantly after surgery. The mean epidural foraminal height [p<0.001], epidural foraminal width [p<0.001], and epidural foraminal area [p<0.001] showed a significant increase after surgery. The mean grade for neural compression was decreased significantly after surgery [p<0.001]. VAS scores for leg pain [p=0.001] and Oswestry disability index [p=0.001] was decreased significantly at one year after surgery. Conclusion : Foraminal stenosis in grade I isthmic spondylolisthesis may effectively decompressed by ALIF with percutaneous pedicle screw fixation.

Fractures and Dislocations of the Cervicothoracic Junction

  • Kim, Jin-Wook;Jeong, Ju-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.3
    • /
    • pp.211-215
    • /
    • 2007
  • Cervicothoracic junction instability should be stabilized with the circumferential fusion. In addition, cervicothoracic junctional area should be examined carefully in acute traumatic injury not only to confirm hidden lesions but also to make the proper surgical plans. Here, three patients who underwent cervicothoracic arthrodesis at our institution are presented with a review of literature.

Comparative Analysis of Surgical Outcomes of C1-2 Fusion Spine Surgery between Intraoperative Computed Tomography Image Based Navigation-Guided Operation and Fluoroscopy-Guided Operation

  • Lee, Jun Seok;Son, Dong Wuk;Lee, Su Hun;Ki, Sung Soon;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.2
    • /
    • pp.237-247
    • /
    • 2020
  • Objective : Fixation of the C1-2 segment is challenging because of the complex anatomy in the region and the need for a high degree of accuracy to avoid complications. Preoperative 3D-computed tomography (CT) scans can help reduce the risk of complications in the vertebral artery, spinal cord, and nerve roots. However, the patient may be susceptible to injury if the patient's anatomy does not match the preoperative CT scans. The intraoperative 3D image-based navigation systems have reduced complications in instrument-assisted techniques due to greater accuracy. This study aimed to compare the radiologic outcomes of C1-2 fusion surgery between intraoperative CT image-guided operation and fluoroscopy-guided operation. Methods : We retrospectively reviewed the radiologic images of 34 patients who underwent C1-2 fusion spine surgery from January 2009 to November 2018 at our hospital. We assessed 17 cases each of degenerative cervical disease and trauma in a study population of 18 males and 16 females. The mean age was 54.8 years. A total of 139 screws were used and the surgical procedures included 68 screws in the C1 lateral mass, 58 screws in C2 pedicle, nine screws in C2 lamina and C2 pars screws, four lateral mass screws in sub-axial level. Of the 34 patients, 19 patients underwent screw insertion using intraoperative mobile CT. Other patients underwent atlantoaxial fusion with a standard fluoroscopy-guided device. Results : A total of 139 screws were correctly positioned. We analyzed the positions of 135 screws except for the four screws that performed the lateral mass screws in C3 vertebra. Minor screw penetration was observed in seven cases (5.2%), and major pedicle screw penetration was observed in three cases (2.2%). In one case, the malposition of a C2 pedicle screw was confirmed, which was subsequently corrected. There were no complications regarding vertebral artery injury or onset of new neurologic deficits. The screw malposition rate was lower (5.3%) in patients who underwent intraoperative CT-based navigation than that for fluoroscopy-guided cases (10.2%). And we confirmed that the operation time can be significantly reduced by surgery using intraoperative O-arm device. Conclusion : Spinal navigation using intraoperative cone-beam CT scans is reliable for posterior fixation in unstable C1-2 pathologies and can be reduced the operative time.

Computer Integrated Surgical Robot System for Spinal Fusion

  • Kim Sungmin;Chung Goo Bong;Oh Se Min;Yi Byung-Ju;Kim Whee Kuk;Park Jong Il;Kim Young Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.265-270
    • /
    • 2005
  • A new Computer Integrated Surgical Robot system is composed of a surgical robot, a surgical planning system, and an optical tracking system. The system plays roles of an assisting surgeon and taking the place of surgeons for inserting a pedicle screw in spinal fusion. Compared to pure surgical navigation systems as well as conventional methods for spinal fusion, it is able to achieve better accuracy through compensating for the portending movement of the surgical target area. Furthermore, the robot can position and guide needles, drills, and other surgical instruments or conducts drilling/screwing directly. Preoperatively, the desired entry point, orientation, and depth of surgical tools for pedicle screw insertion are determined by the surgical planning system based on CT/MR images. Intra-operatively, position information on surgical instruments and targeted surgical areas is obtained from the navigation system. Two exemplary experiments employing the developed image-guided surgical robot system are conducted.