• Title/Summary/Keyword: Pedicle Screw

Search Result 128, Processing Time 0.022 seconds

An Image-Guided Robotic Surgery System for Spinal Fusion

  • Chung Goo Bong;Kim Sungmin;Lee Soo Gang;Yi Byung-Ju;Kim Wheekuk;Oh Se Min;Kim Young Soo;So Byung Rok;Park Jong Il;Oh Seong Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.30-41
    • /
    • 2006
  • The goal of this work is to develop and test a robot-assisted surgery system for spinal fusion. The system is composed of a robot, a surgical planning system, and a navigation system. It plays the role of assisting surgeons for inserting a pedicle screw in the spinal fusion procedure. Compared to conventional methods for spinal fusion, the proposed surgical procedure ensures minimum invasion and better accuracy by using robot and image information. The robot plays the role of positioning and guiding needles, drills, and other surgical instruments or conducts automatic boring and screwing. Pre-operative CT images intra-operative fluoroscopic images are integrated to provide the surgeon with information for surgical planning. Some experiments employing the developed robotic surgery system are conducted. The experimental results confirm that the system is not only able to guide the surgical tools by accurately pointing and orienting the specified location, but also successfully compensate the movement of the patient due to respiration.

Computer-Assisted Orthopaedic Surgery in Bone Tumor (항법장치를 이용한 골종양 수술)

  • Cho, Hwan-Seong;Park, Il-Hyung;Mun, Jong-Uk;Kim, Han-Soo
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The usefulness and accuracy of computer-assisted surgery have been evaluated clinically in many orthopedic fields, such as, joint replacement arthroplasty, cruciate ligament reconstruction, and pedicle screw placemen. Recently several preliminary reports have been issued on the application of navigation to bone tumor surgery. The main advantage of navigation-assisted bone tumor surgery is that it provides highly accurate three-dimensional radiological information for intraoperative guidance. In particular, distances from tumors to resection margins can be precisely determined using intraoperative three-dimensional images. Accordingly, the technique allows preservation of function to be maximized by minimizing unnecessary resection. However, surgeons should recognize that the accuracies of navigation systems in bone tumor surgery have some hidden pitfalls. Here, based on our clinical results, we describe the surgical techniques used and include some cautionary notes.

  • PDF

Development of An Image-Guided Robotic Surgery System for Spinal Fusion (영상 지원 척추 융합 수술 로봇 시스템의 개발)

  • Chung Goo-Bong;Lee Soo-Gang;Kim Sung-Min;Oh Se-Min;Yi Byung-Ju;Kim Young-Soo;Park Jong-Il;Oh Seong-Hoon;Kim Whee-Kuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.144-148
    • /
    • 2005
  • The goal of this work is to develop and test a robot-assisted surgery system for spinal fusion. The system is composed of a robot, a surgical planning system, and a navigation system. It plays the role of assisting surgeons for inserting a pedicle screw in the spinal fusion procedure. Compared to conventional methods fer spinal fusion, the proposed surgical procedure ensures minimum invasion and better accuracy by using robot and image information. The robot plays the role of positioning and guiding needles, drills, and other surgical instruments or conducts automatic boring and screwing. Pre-operative CT images and intra-operative fluoroscopic images are integrated to provide the surgeon with information for surgical planning. Several experiments employing the developed robotic surgery system are conducted. The experimental results confirmed that the system is not only able to guide the surgical tools by accurately pointing and orienting the specified location, but also successfully compensate the movement of the patient due to his/her respiration.

  • PDF

Comparison between Posterior and Transforaminal Approaches for Lumbar Interbody Fusion

  • Park, Jae-Sung;Kim, Young-Baeg;Hong, Hyun-Jong;Hwang, Sung-Nam
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.5
    • /
    • pp.340-344
    • /
    • 2005
  • Objective: Posterior lumbar interbody fusion(PLIF), the current leading method of pedicle screw fixation combined with interbody fusion via posterior route, sometimes requires too much destruction of the facet joint than expected especially for the patient with a narrow spine. On the other hand, tranforaminal lumbar interbody fusion(TLIF) technique provides potential advantages over PLIF and can be chosen as a better surgical alternative to more traditional fusion methods in certain surgical conditions. Methods: From October 1999, 99 PLIF and 29 TLIF procedures were done for the patients with spinal stenosis and instability. Radiological data including the interpedicular distance and the size of the pedicles as well as the clinical parameters were collected retrospectively. The degree of resection of the inferior articular process was compared with the interpedicular distance in each patient who received PLIF. Results: No significant differences were found between PLIF and TLIF regarding the operation time, blood loss, duration of hospital stay, or short term postoperative clinical result. There were no complication with TLIF, but PLIF resulted in 9(9.1%) complications. During PLIF procedure, all patients(n=24) except one with the interpedicular distance shorter than 27mm required near complete or complete resection of the inferior articular processes, whereas only 6(31.5%) of 19 patients with the interpedicular distances longer than 30mm required the similar extent of resection. Conclusion: TLIF is better than PLIF in terms of the complication rate. The patient who had narrow interpedicular distance(<27mm) might be better candidate for TLIF.

Adolescent Idiopathic Scoliosis Treatment by a Korean Neurosurgeon : The Changing Role for Neurosurgeons

  • Hyun, Seung-Jae;Kim, Woong-Beom;Park, Young-Seop;Kim, Ki-Jeong;Jahng, Tae-Ahn;Kim, Yongjung J.
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.1
    • /
    • pp.50-53
    • /
    • 2015
  • Objective : The purpose of this study was to evaluate radiographic/clinical outcomes of adolescent idiopathic scoliosis (AIS) patients treated by a Korean neurosurgeon. Methods : Ten AIS patients were treated by a single neurosurgeon between January 2011 and September 2013 utilizing segmental instrumentation with pedicle screws. Basic demographic information, curve pattern by Lenke classification, number of levels treated, amount of correction achieved, radiographic/clinical outcomes [by Scolisis Resarch Society (SRS-22r) questionnaire] and complications were evaluated to determine the surgical results. Pulmonary function test was utilized to assess forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) before and after surgery. Results : The average percentage of correction of the major structural curve was 73.6% (ranged from 64% to 81.5%). Preoperative and final postoperative absolute FVC averaged 3.03 L and 3.76 L (0.73 L increase, p=0.046), and absolute FEV1 averaged 2.63 L and 3.49 L (0.86 L increase, p=0.021). Preoperative and final postoperative average self-image and function scores of SRS-22r were, $2.6{\pm}0.5$, $3.3{\pm}0.1$, $4.0{\pm}0.5$, and $4.6{\pm}0.0$, respectively. There was a significant improvement of the self-image and function scores of SRS-22r questionnaires before and after surgery (p<0.05). There was no case of neurological deficit, infection and revision for screw malposition. One patient underwent a fusion extension surgery for shoulder asymmetry. Conclusion : Radiographic/clinical outcomes of AIS patients treated by a Korean neurosurgeon were acceptable. Fundamental understanding of pediatric spinal deformity is essential for the practice of AIS surgery.

Demineralized Bone Matrix (DBM) as a Bone Void Filler in Lumbar Interbody Fusion : A Prospective Pilot Study of Simultaneous DBM and Autologous Bone Grafts

  • Kim, Bum-Joon;Kim, Se-Hoon;Lee, Haebin;Lee, Seung-Hwan;Kim, Won-Hyung;Jin, Sung-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.2
    • /
    • pp.225-231
    • /
    • 2017
  • Objective : Solid bone fusion is an essential process in spinal stabilization surgery. Recently, as several minimally invasive spinal surgeries have developed, a need of artificial bone substitutes such as demineralized bone matrix (DBM), has arisen. We investigated the in vivo bone growth rate of DBM as a bone void filler compared to a local autologous bone grafts. Methods : From April 2014 to August 2015, 20 patients with a one or two-level spinal stenosis were included. A posterior lumbar interbody fusion using two cages and pedicle screw fixation was performed for every patient, and each cage was packed with autologous local bone and DBM. Clinical outcomes were assessed using the Numeric Rating Scale (NRS) of leg pain and back pain and the Korean Oswestry Disability Index (K-ODI). Clinical outcome parameters and range of motion (ROM) of the operated level were collected preoperatively and at 3 months, 6 months, and 1 year postoperatively. Computed tomography was performed 1 year after fusion surgery and bone growth of the autologous bone grafts and DBM were analyzed by ImageJ software. Results : Eighteen patients completed 1 year of follow-up, including 10 men and 8 women, and the mean age was 56.4 (32-71). The operated level ranged from L3/4 to L5/S1. Eleven patients had single level and 7 patients had two-level repairs. The mean back pain NRS improved from 4.61 to 2.78 (p=0.003) and the leg pain NRS improved from 6.89 to 2.39 (p<0.001). The mean K-ODI score also improved from 27.33 to 13.83 (p<0.001). The ROM decreased below 2.0 degrees at the 3-month assessment, and remained less than 2 degrees through the 1 year postoperative assessment. Every local autologous bone graft and DBM packed cage showed bone bridge formation. On the quantitative analysis of bone growth, the autologous bone grafts showed significantly higher bone growth compared to DBM on both coronal and sagittal images (p<0.001 and p=0.028, respectively). Osteoporotic patients showed less bone growth on sagittal images. Conclusion : Though DBM alone can induce favorable bone bridging in lumbar interbody fusion, it is still inferior to autologous bone grafts. Therefore, DBM is recommended as a bone graft extender rather than bone void filler, particularly in patients with osteoporosis.

Long Term Efficacy of Posterior Lumbar Interbody Fusion with Standard Cages alone in Lumbar Disc Diseases Combined with Modic Changes

  • Kwon, Young-Min;Chin, Dong-Kyu;Jin, Byung-Ho;Kim, Keun-Su;Cho, Yong-Eun;Kuh, Sung-Uk
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.322-327
    • /
    • 2009
  • Objective : Posterior lumbar interbody fusion (PLIF) is considered to have the best theoretical potential in promoting bony fusion of unstable vertebral segments by way of a load sharing effect of the anterior column. This study was undertaken to investigate the efficacy of PLIF with cages in chronic degenerative disc disease with Modic degeneration (changes of vertebral end plate). Methods : A total of 597 patients underwent a PLIF with threaded fusion cages (TFC) from 1993 to 2000. Three-hundred-fifty-one patients, who could be followed for more than 3 years, were enrolled in this study. Patients were grouped into 4 categories according to Modic classification (no degeneration : 259, type 1 : 26, type 2 : 55, type 3 : 11). Clinical and radiographic data were evaluated retrospectively. Results : The clinical success rate according to the Prolo's functional and economic outcome scale was 86% in patients without degeneration and 83% in patients with Modic degeneration. The clinical outcomes in each group were 88% in type 1, 84% in type 2, and 73% in type 3. The bony fusion rate was 97% in patients without degeneration and 83% in patients with Modic degeneration. The bony fusion rate in each group was 81% in type 1, 84% in type 2, and 55% in type 3. The clinical success and fusion rates were significantly lower in patients with type 3 degeneration. Conclusion : The PLIF with TFC has been found to be an effective procedure for lumbar spine fusion. But, the clinical outcome and bony fusion rates were significantly low in the patients with Modic type 3. The authors suggest that PLIF combined with pedicle screw fixation would be the better for them.

Finite Element Analysis of Instrumented Posterior Lumbar Interbody Fusion Cages for Reducing Stress Shielding Effects: Comparison of the CFRP cage and Titanium cage (요추유합술에서 응력방패 현상 감소를 위한 케이지의 유한요소해석 : CFRP 케이지와 티타늄 케이지 비교 연구)

  • Kang, Kyung-Tak;Chun, Heoung-Jae;Kim, Ho-Joong;Yeom, Jin-S.;Park, Kyoung-Mi;Hwang, In-Han;Lee, Kwang-Ill
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.98-104
    • /
    • 2012
  • In recent years, degenerative spinal instability has been effectively treated with a cage. However, little attention is focused on the stiffness of the cage. Recent advances in the medical implant industry have resulted in the use of medical carbon fiber reinforced polymer (CFRP) cages. The biomechanical advantages of using different cage material in terms of stability and stresses in bone graft are not fully understood. A previously validated three-dimensional, nonlinear finite element model of an intact L2-L5 segment was modified to simulate posterior interbody fusion cages made of CFRP and titanium at the L4-L5 disc with pedicle screw, to investigate the effect of cage stiffness on the biomechanics of the fused segment in the lumbar region. From the results, it could be found that the use of a CFRP cage would not only reduce stress shielding, but it might also have led to increased bony fusion.