• 제목/요약/키워드: Pedestrian-vehicle

검색결과 255건 처리시간 0.021초

차량-보행자 충돌사고 재구성 해석: 차량 속도 계산과 불확실성 (Reconstruction Analysis of Vehicle-pedestrian Collision Accidents: Calculations and Uncertainties of Vehicle Speed)

  • 한인환
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.82-91
    • /
    • 2011
  • In this paper, a planar model for mechanics of a vehicle/pedestrian collision incorporating road gradient is derived to evaluate the pre-collision speed of vehicle. It takes into account a few physical variables and parameters of popular wrap and forward projection collisions, which include horizontal distance traveled between primary and secondary impacts with the vehicle, launch angle, center-of-gravity height at launch, distance from launch to rest, pedestrian-ground drag factor, the pre-collision vehicle speed and road gradient. The model including road gradient is derived analytically for reconstruction of pedestrian collision accidents, and evaluates the vehicle speed from the pedestrian throw distance. The model coefficients have physical interpretations and are determined through direct calculation. This work shows that the road gradient has a significant effect on the evaluation of the vehicle speed and must be considered in accident cases with inclined road. In additions, foreign/domestic empirical cases and multibody dynamic simulation results are used to construct a least-squares fitted model that has the same structure of the analytical one that provides an estimate of the vehicle speed based on the pedestrian throw distance and the band within which the vehicle speed would be expected to be in 95% of cases.

충격 지점과 보행자 전도 거리의 상관관계에 관한 연구 (A Study on the Relationship between Impact Point of Vehicle and Throw Distance of Pedestrian)

  • 강대민;안승모
    • 한국기계가공학회지
    • /
    • 제6권3호
    • /
    • pp.71-76
    • /
    • 2007
  • The fatalities of pedestrian account for about 40.0% of all fatalities in Korea 2005. Vehicle-Pedestrian accident generates trajectory of pedestrian. In pedestrian involved accident, the most important data to inspect accident is throw distance of pedestrian. The throw distance of pedestrian can be influenced by many variables. The variables that influence trajectory of pedestrian can be classified into vehicular factors, pedestrian factors, and road factors. Vehicular factors are the frontal shape of vehicle, impact speed of vehicle, the offset of impact point. Many studies have been done about the relation between impact speed and throw distance of pedestrian. But the influence of the offset of impact point was neglected. The influence of the offset of impact point was analyzed by Working Model, and the trajectory of pedestrian, dynamic characteristics of multi-body were analyzed by PC-CRASH, a kinetic analysis program for a traffic accident. Based on the results, the increase of offset reduced the throw distance of pedestrian. However box type vehicle just like bus, the offset of impact point did not influence the throw distance of pedestrian considerably.

  • PDF

A Study on the Perception of Personal Mobility Vehicle for the Improvement of Pedestrian Environment for the Disabled

  • Lee, Joohyung;Lee, Kyooil
    • Physical Therapy Rehabilitation Science
    • /
    • 제10권2호
    • /
    • pp.124-133
    • /
    • 2021
  • Objective: In order to secure the right to walk for the weak, such as the disabled, this study aims to suggest ways to improve the pedestrian environment by identifying factors that cause obstacles to walking. Design: Data Analysis and Perception Survey. Methods: The questionnaire was conducted separately between users of personal mobility vehicle and non-users. A total of 207 effective questionnaires were collected, and the analysis analyzed the perception of personal mobility vehicle by conducting frequency analysis using SAS 9.4. The survey focused on basic information on respondents, walking conditions, understanding of personal mobility vehicle, awareness of pedestrian space passage and parking, and awareness of the possibility of securing pedestrian rights due to new regulations. Results: First, when moving a pedestrian path by personal mobility vehicle, it shall be limited to less than the walking speed of pedestrians. Second, the parking location of the personal mobility vehicle is located at the boundary of the pedestrian road and the lane. Third, pay a fair price to park in a pedestrian space. Conclusions: It is necessary to improve the system to strengthen the contents of education to take into account the safety of pedestrians in education on how to use personal mobility vehicle.

차 대 보행자 충돌시 사고해석 모델개발 (Development of Accident Analysis Model in Car to Pedestrian Accident)

  • 강대민;안승모;안정오
    • 한국자동차공학회논문집
    • /
    • 제18권3호
    • /
    • pp.104-109
    • /
    • 2010
  • The fatality of pedestrian accounts for about 21.2% of all fatality at 2007 year in Korea. In car to pedestrian accident it is very important to inspect the throw distance of pedestrian after collision for exact reconstructing of the accident. The variables that influence on the throw distance of pedestrian can be classified into the factors of vehicle and pedestrian, and road condition. It was simulated by PC-CRASH, a kinetic analysis program for a traffic accident in sedan type vehicle and SPSS program was used for regression analysis. From the results, the throw distance of pedestrian increased with the increasing of vehicle velocity, and decreased with the increasing of impact offset. Also it decreased with the increasing of velocity of pedestrian at accident, and throw distance at the road condition of wet was longer than that at dry condition. Finally, the regression model of sedan type vehicle on the throw distance of pedestrian was as follows; $$dist_i=2.39-0.11offset_i+0.59speed_i-545height_i-0.25walk_i+2.78wet_i+{\epsilon}_i$$.

차 대 보행자 충돌 시 사고해석 모델 개발 (Development of Accident Analysis Model in Car to Pedestrian Accident)

  • 강대민;안승모
    • 동력기계공학회지
    • /
    • 제13권5호
    • /
    • pp.76-81
    • /
    • 2009
  • The fatalities of pedestrian account for about 21.2% of all fatalities at 2007 year in Korea. To reconstruct exactly the accident, it is important to calculate the throw distance of pedestrian in car to pedestrian accident. The frontal shape of SUV vehicle is dissimilar to passenger car and bus, so the trajectory and throw distance of pedestrian by SUV vehicle is not the same of passenger car and bus. The influencing on it can be classified into the factors of vehicle and pedestrian, and road factor. It was analyzed by PC-CRASH for simulation, and SPSS s/w was used for regression analysis. From the simulation results, the maximum impact energy of multi-body of pedestrian was occurred to that of torso body at the same time. And the throw distance increased with the increasing of impact velocity, and decreased with the increasing of impact offset. Also it decreased with the increasing of velocity of pedestrian at accident, and the throw distance of wet road was longer than that of dry road. Finally, the regression analysis model of SUV(Nissan Pathfinder type)vehicle in car to pedestrian accident was as follows; $$disti_i=-0.87-0.11offseti_i+0.69speed_i-4.27height_i+0.004walk_i+0.63wet_i+{\epsilon}_i$$.

  • PDF

보행자 보호를 위한 안전 후드 개발 (Development of Safe Hood for Pedestrian Protection)

  • 김태정;홍승현;이두환;한도석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.345-346
    • /
    • 2008
  • Most pedestrian-vehicle crashes involve frontal impacts, and the vehicle front structures are responsible for most pedestrian injuries. The vehicle bumper contacts the lower legs at first. The leading edge of the hood (bonnet) strikes the proximal upper leg and finally, the head and upper torso hit the top surface of the hood or windscreen. In essence, the pedestrian wraps around the front of the vehicle until pedestrian and vehicle are traveling at the same speed. Since the hood surface is made from sheet metal, it is a relatively compliant structure and does not pose a major risk for severe head trauma. However, serious head injury can occur when the head hits a region of the hood with stiff underlying structures such as engine components. The solution is to provide sufficient clearance between the hood and underlying structures for controlled deceleration of a pedestrian's head. However, considerations of aerodynamic design and styling can make it extremely difficult to alter a vehicle's front end geometry to provide more under-hood space. In this study, the safe hood will be developed by designing new conceptual inner panel in order to decrease the pedestrian's head injuries without changing hood outer geometry.

  • PDF

택시 영상DB를 활용한 교통약자 보행자 사고의 심각도 분석 (Severity Analysis for Vulnerable Pedestrian Accident Utilizing Vehicle Recorder Database of Taxi)

  • 정재훈;설재훈;최성택;노정현;이지선
    • 한국안전학회지
    • /
    • 제29권3호
    • /
    • pp.98-106
    • /
    • 2014
  • This study proposes severity analysis for pedestrian accidents by improving variables which were used for general severity analysis. The existing variables were collected based on the interviews with policeman or witnesses and evidence of accidents. Therefore, existing variables were subjective and had several measurement errors. In order to improve such problems, this study collected variables from vehicle recorder of taxi which recorded the moment of accidents. As a result, explanatory power of independent variables was enhanced and the complete objective variables could be collected. After collecting variables, ordered probit model was developed by utilizing vehicle recorder database. Fitness of ordered probit model was 0.23. Vehicle speed and pedestrian's eye direction variables were the most critical factors for severity of pedestrian accident. In addition, severity analysis for vulnerable pedestrian was carried out. As a result, it was revealed that vehicle speed, pedestrian's eye direction and safety zone variables affected the severity of pedestrian accidents most. Particularly, vehicle speed variable is the most important factor. Consequently, driver's defensive driving and compliance to the regulations are the priority to reduce severity of pedestrian accidents and prevent pedestrian accident.

보행자의 두부(頭部)가 승용차의 전면유리에 닿는 최저속도에 관한 연구 (A Study on Minimum Speed of Vehicle in Collision between Pedestrian Head and Windshield)

  • 심재귀;이상수
    • 한국ITS학회 논문지
    • /
    • 제15권5호
    • /
    • pp.54-61
    • /
    • 2016
  • 본 연구는 차량-보행자 사고시 보행자의 신장에 따라 보행자의 두부가 승용차의 전면유리에 닿을 수 있는 최저 속도를 제시하기 위하여 수행되었다. 마디모(MADYMO) 프로그램을 사용하여, NF쏘나타 차량에 대하여 보행자의 신장을 160cm, 170cm 180cm로 구분하여 평가하였다. 평가 결과, 승용차의 최저 속도값은 보행자의 신장이 160cm인 경우 약 49km/h, 170cm일 때 약 41km/h, 그리고 180cm일 때 약 29km/h로 나타났다. 이러한 값은 승용차 대 보행자 교통사고에서 승용차의 전면유리에 보행자 두부의 충돌흔적이 있을 시 속도추정의 중요 자료로 활용할 수 있을 것으로 기대된다.

보행신호를 대기하는 보행자의 안전에 관한 연구 (A Study on the Safety for Pedestrians Waiting for Signal)

  • 김한솔;백세룡;최용순;윤준규;임종한
    • 자동차안전학회지
    • /
    • 제13권3호
    • /
    • pp.41-46
    • /
    • 2021
  • The number of big traffic accident cases of pedestrian death appeared to be minor, however compared to death rate in car to car accidents is very high and quite a few of the pedestrian death rates among all traffic accidents are counted to be almost 40%. Previous pedestrian safety studies were mostly aimed at reducing the degree of pedestrian injuries from a vehicle to pedestrian collision, and less at preventing a collision itself. This research was conducted with a method of using road facilities to prevent vehicles from rushing into the sidewalk. This research used one of the collision analyzing programs, called PC-Crash to simulate the vehicle rushing into the sidewalk. Based on the program, it could derive an optimal safe zone location where the pedestrian can wait for the pedestrian light safely. Also, changing road facilities such as pedestrian light pillars or signal controllers can widen 440% compared to the present safe zone. Accordingly, researchers have to consider a method to analyze and apply pedestrian safe zones along with road facilities location when designing a road.

보행자 충돌 회피를 위한 자율주행 차량의 종방향 거동 계획 (Longitudinal Motion Planning of Autonomous Vehicle for Pedestrian Collision Avoidance)

  • 김유진;문종식;정용환;이경수
    • 자동차안전학회지
    • /
    • 제11권3호
    • /
    • pp.37-42
    • /
    • 2019
  • This paper presents an autonomous acceleration planning algorithm for pedestrian collision avoidance at urban. Various scenarios between pedestrians and a vehicle are designed to maneuver the planning algorithm. To simulate the scenarios, we analyze pedestrian's behavior and identify limitations of fusion sensors, lidar and vision camera. Acceleration is optimally determined by considering TTC (Time To Collision) and pedestrian's intention. Pedestrian's crossing intention is estimated for quick control decision to minimize full-braking situation, based on their velocity and position change. Feasibility of the proposed algorithm is verified by simulations using Carsim and Simulink, and comparisons with actual driving data.