• Title/Summary/Keyword: Pedestrian wind environment

Search Result 22, Processing Time 0.024 seconds

Prediction and Evaluation of the Wind Environment in Site Planning of Apartment Housing by CFD (아파트 주거의 배치계획에 있어 CFD에 의한 풍환경의 예측과 평가)

  • Sohn, Saehyung
    • KIEAE Journal
    • /
    • v.10 no.2
    • /
    • pp.63-69
    • /
    • 2010
  • Diverse problems in wind environment has occurred through rapid urbanization and growth of high-rise building numbers, This study aims to propose the CFD (Computational Fluid Dynamics) simulation method and evaluation standard of wind environment in site planning of high rise apartment housing. The CFD simulation method proposed in this study is not existing detail simulation, but it is the method that a designer can correct and develop the design through immediate evaluation of design options in concept design phase. Therefore, the proposed CFD simulation method of wind environment in this study uses the BIM based CFD tool in which the 3D model in concept design phase can be used as for the CFD simulation. In this paper, the study examines existing evaluation standards of comfortableness level in wind environment for pedestrian near buildings, and selects new evaluation method which is possible to apply to the proposed CFD simulation method. In addition, it is to examine calculation time-spending and appropriate mesh division method for finding CFD result which is useful to find the best design options in aspect of wind environment in concept design phase. Furthermore, it proposes the wind environment evaluation method through BIM based CFD simulation.

Dispersal of Hazardous Substance in a City Environment Based on Weather Conditions and Its Risk Assessment at the Pedestrian Level (기상조건에 따른 도시내 위험물질 확산정보와 보행자환경 위험영향평가)

  • Kim, Eun-Ryoung;Lee, Gwang-Jin;Yi, Chaeyeon
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.4
    • /
    • pp.242-256
    • /
    • 2017
  • In this paper, dispersion scenarios concerning various meteorological conditions and real urban structures were made to estimate the impacts of hazardous substance leakage accidents and to reduce damages. Based on the scenario of the hazardous substance dispersion, the characteristics of the risk in the pedestrian environment were analyzed in Gangnam, Seoul. The scenarios are composed of 48 cases according to the meteorological conditions of wind direction and wind speed. In order to analyze the dispersion characteristics of the hazardous substances, simulations were conducted using a computational fluid dynamic (CFD) model with hydrogen fluoride releases. The validation for the simulated wind was conducted at a specific period, and all the calculated verification indices were within the valid range. As a result of simulated dispersion field at pedestrian level, it was found that the dispersion pattern was influenced by the flow, which was affected by the artificial obstacles. Also, in the case of the weakest wind speed of the inflow, the dispersion of the hazardous substance appeared in the direction of the windward side at the pedestrian level due to the reverse flow occurred at lower layers. Through this study, it can be seen that the artificial structures forming the city have a major impact on the flow formed in urban areas. The proposed approach can be used to simulate the dispersion of the hazardous substances and to assess the risk to pedestrians in the industrial complexes dealing with actual hazardous substances in the future.

Consideration for Application of Wind Environment Assement on Ecological Parks in Cities (도시 생태공원의 풍환경 평가 적용에 관한 고찰)

  • Kim, Wonsul;Jung, Il Won;Kwon, Ji-Hye
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.117-122
    • /
    • 2019
  • City parks play an important role in reducing the air pollution and mitigating the city heat island effect caused by global warming. However, from July 2020, restricted parks over 20-year will be partially lifted due to sunset regulation on parks. As a result, the government and local governments have been making efforts to revitalize parks, such as creating ecological parks and securing park sites. However, building winds generated by high-rise buildings constructed around ecological parks in the city may cause discomfort to pedestrians and threaten the ecosystems of plants and animal that live in ecological parks. There are no clearly proposed as standards for wind environment assessment in Korea, but also it has been rarely studied on pedestrian wind environment. In this study, wind environment studies have been reviewed to find the important parameters related to wind environment assessment. Further, wind climate analysis using wind data obtained by Seoul meterological station was performed to examine the possibility of applicability of the wind environment assessment on the city ecological parks.

Comparison of various k-ε models and DSM applied to flow around a high-rise building - report on AIJ cooperative project for CFD prediction of wind environment -

  • Mochida, A.;Tominaga, Y.;Murakami, S.;Yoshie, R.;Ishihara, T.;Ooka, R.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.227-244
    • /
    • 2002
  • Recently, the prediction of wind environment around a building using Computational Fluid Dynamics (CFD) technique comes to be carried out at the practical design stage. However, there have been very few studies which examined the accuracy of CFD prediction of flow around a high-rise building including the velocity distribution at pedestrian level. The working group for CFD prediction of wind environment around building, which consists of researchers from several universities and private companies, was organized in the Architectural Institute of Japan (AIJ) considering such a background. At the first stage of the project, the working group planned to carry out the cross comparison of CFD results of flow around a high rise building by various numerical methods, in order to clarify the major factors which affect prediction accuracy. This paper presents the results of this comparison.

Application Examples of CFD at the Planning Stage of High-Rise Buildings

  • Hiroto, Kataoka;Yoshiyuki, Ono;Kota, Enoki;Yuichi, Tabata;Satoko, Kinashi
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.145-156
    • /
    • 2022
  • Application examples of computational fluid dynamics (CFD) in the planning stage of high-rise buildings are introduced. First, we introduce examples of applications in the environmental field. The pedestrian wind environment was one of the earliest practical examples of CFD. CFD was also employed to validate the heat island mitigation measures proposed as part of the new construction plan. Second, application examples of wind-force evaluations are introduced. Prediction examples are presented for the peak wind pressure around a complex-shaped building and the wind force evaluation for a base-isolated building. The results prove that the results of the proper execution of CFD are equivalent to those of the wind tunnel experiment. As examples of CFD applications of other issues related to high-rise building planning, we introduce snow accretion on outer walls and high-temperature exhaust from emergency generators. Finally, the future prospects for the use of CFD are discussed.

An Analysis on Micro-climate Characteristic of Apartments in Beijing, China Using ENVI-met Simulation (ENVI-met를 이용한 중국 베이징 아파트 하절기 미기후 특성 분석)

  • Wu, Jin-Dong;Lee, Jun-Hoo;Yoon, Seong-Hwan
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.169-176
    • /
    • 2019
  • The purpose of this study was to analyze outdoor thermal comfort of apartments planning characteristic of pedestrian height in Beijing, China. Selecting 322 apartment complexes with more than 1000 households and more than 10 buildings(including 10 buildings), mainly in Chaoyang District and Tongzhou District to select 32 basic layout types and then 12 typical layout types were select in 32 basic layout types. Finally, the simulation was conducted for the 12 typical layout types using the micro-climate model ENVI-met to evaluate the wind environment, the thermal environment and the comfort. The results of this study as follows: In the parallel arrangement, it has the best outdoor thermal comfort of Slab-East-Parallel(S/E/P). Next is Slab-South-Parallel(S/S/P), Tower-South-Parallel(T/S/P) in turn. In the stagger arrangement, Mixture-South-North and South Stagger-1(M/S/NSS-1) has the best outdoor thermal comfort and Slab-South-North and South Stagger(S/S/NSS), Tower-South-North and South Stagger(T/S/NSS), Mixture-South-North and South Stagger-3(M/S/NSS-3), Mixture-South-North and South Stagger-4(M/S/NSS-4), Mixture-South-North and South Stagger-2(M/S/NSS-2) in turn. In the cluster arrangement, Mixture-Mixture-Cluster-2(M/M/C-2) has the best outdoor thermal comfort and Mixture-Mixture-Cluster-3(M/M/C-3), Mixture-Mixture-Cluster-1(M/M/C-1) in turn. Due to the low wind speed and high air temperature, it is necessary to consider the layout types that can form the wind road at first, such as Mixture-South-North and South Stagger-1(M/S/NSS-1), Slab-South-North and South Stagger(S/S/NSS) and so on.

Wind direction field under the influence of topography, part I: A descriptive model

  • Weerasuriya, A.U.;Hu, Z.Z.;Li, S.W.;Tse, K.T.
    • Wind and Structures
    • /
    • v.22 no.4
    • /
    • pp.455-476
    • /
    • 2016
  • In both structural and environmental wind engineering, the vertical variation of wind direction is important as it impacts both the torsional response of the high-rise building and the pedestrian level wind environment. In order to systematically investigate the vertical variation of wind directions (i.e., the so-called 'twist effect') induced by hills with idealized geometries, a series of wind-tunnel tests was conducted. The length-to-width aspect ratios of the hill models were 1/3, 1/2, 1, 2 and 3, and the measurements of both wind speeds and directions were taken on a three-dimensional grid system. From the wind-tunnel tests, it has been found that the direction changes and most prominent at the half height of the hill. On the other hand, the characteristic length of the direction change, has been found to increase when moving from the windward zone into the wake. Based on the wind-tunnel measurements, a descriptive model is proposed to calculate both the horizontal and vertical variations of wind directions. Preliminarily validated against the wind-tunnel measurements, the proposed model has been found to be acceptable to describe the direction changes induced by an idealized hill with an aspect ratio close to 1. For the hills with aspect ratios less than 1, while the description of the vertical variation is still valid, the horizontal description proposed by the model has been found unfit.

Study on the Impact of Roadside Forests on Particulate Matter between Road and Public Openspace in front of Building Site - Case of Openspace of Busan City hall in Korea - (도심 도로변 가로녹지가 주변 오픈스페이스의 미세먼지농도에 미치는 영향 연구 - 부산시청 광장을 대상으로 -)

  • Hong, Suk-Hwan;Kang, Rae-Yeol;An, Mi-Yeon;Kim, Ji-Suk;Jung, Eun-Sang
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.3
    • /
    • pp.323-331
    • /
    • 2018
  • This study was conducted to examine the effects of constructing streetside urban forests on particulate matter (PM) content in pedestrian paths and open spaces created between the main streets and buildings in a high-rise, high-density urban area. The study site is a 70m-wide open space between Busan City Hall and Jungang-street in Busan, Korea. The results showed that the density of PM differences between the open space and the adjacent main street were small in regions without linear trees and shrub rows during both the weekdays and weekend. On the other hand, the areas with linear trees and shrub rows were found to have significantly higher concentrations of PM compared to the roadway. In particular, sections with linear trees and shrub rows had higher PM levels both on roads and in adjacent open space, indicating that the composition of linear trees and shrub rows increased the concentration of PM in the off-street open space in areas with wide space between the roadway and building. The impact was more significant in the open space than the roadway. This phenomenon can be explained by the fact that PM generated by vehicles flows through the roadside shrubs by rapid wind flow but does not disperse widely in the pedestrian paths where the wind flow was reduced. In this study, we found that the roadside tree and shrub walls slowed the flow of wind, causing vehicle-emitted PM to accumulate if a wide open space was created between the road and building, resulting in higher concentration of PM in the open space. We confirmed that the distance between the road and building was a critical factor for constructing linear trees and shrub rows to reduce PM generated by vehicle traffic.

The Impact of Comfort of built Environment and Microclimate on Outdoor Activities in Urban Space (건조환경의 쾌적성과 미기후가 도시공간의 외부활동 지속에 미치는 영향 분석)

  • Jeong, Yunnam;Lee, Gunwon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.5
    • /
    • pp.565-575
    • /
    • 2019
  • This study aimed to examine the influence of physical environment, microclimate, and comfort on sustaining outdoor activities. This study has identified the main factors that influence sustaining outdoor activities as physical environment, comfort in the physical environment, microclimate and microclimate comfort. For analysis, the study conducted the investigation on pedestrian walkability during spring, summer and winter of the year 2017. The microclimate levels were also recorded at the same time. The method of logit regression analysis was used to analyze these outcomes. The result showed that the comfort and safety of the physical environment as well as the ideal climatic conditions, in terms of temperature, wind level, and solar insolation, were related to sustaining outdoor activities. Also, walking and shopping in the physical and climatic environment were the factors that were found to be more influenced than the act of remaining in a place and forming conversations.

Analysis of the effect of street green structure on PM2.5 in the walk space - Using microclimate simulation - (가로녹지 유형이 보행공간의 초미세먼지에 미치는 영향 분석 - 미기후 시뮬레이션을 활용하여 -)

  • Kim, Shin-Woo;Lee, Dong-Kun;Bae, Chae-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.4
    • /
    • pp.61-75
    • /
    • 2021
  • Roadside greenery in the city is not only a means of reducing fine dust, but also an indispensable element of the city in various aspects such as improvement of urban thermal environment, noise reduction, ecosystem connectivity, and aesthetics. However, in studies dealing with the effect of reducing fine dust through trees in existing urban spaces, microscopic aspects such as the adsorption effect of plants were dealt with, structural changes such as the width of urban buildings and streets, and the presence or absence of trees, Impact studies that reflect the actual form of In this study, the effect of greenery composition applicable to urban space on PM2.5 was simulated through the microclimate epidemiologic model ENVI-met, and field measurements were performed in parallel to verify the results. In addition, by analyzing the results of fine dust background concentration, wind speed, and leaf area index, the sensitivity to major influencing variables was tested. As a result of the study, it was confirmed that the fine dust reduction effect was the highest in the case with a high planting amount, and the reduction effect was the greatest at a low background concentration. Based on this, the cost of planting street green areas and the effect of reducing PM2.5 were compared. The results of this study can contribute as a basis for considering the effect of pedestrian space on air quality when planning and designing street green spaces.