• Title/Summary/Keyword: Pedestrian navigation

Search Result 79, Processing Time 0.023 seconds

Pedestrian Network Models for Mobile Smart Tour Guide Services

  • Jwa, Jeong-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • The global positioning system (GPS)-enabled mobile phones provide location-based applications such as car and pedestrian navigation services. The pedestrian navigation services provide safe and comfortable route and path guidance for pedestrians and handicapped or elderly people. One of the essential components for a navigation system is a spatial database used to perform navigation and routing functions. In this paper, we develop modeling and categorization of pedestrian path components for smart tour guide services using the mobile pedestrian navigation application. We create pedestrian networks using 2D base map and sky view map in urban area. We also construct pedestrian networks and attributes of node, link, and POI using on-site GPS data and photos for smart pedestrian tour guide in the major walking tourist spots in Jeju.

Pedestrian Navigation System using Inertial Sensors and Vision (관성센서와 비전을 이용한 보행용 항법 시스템)

  • Park, Sang-Kyeong;Suh, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2048-2057
    • /
    • 2010
  • Is this paper, a pedestrian inertial navigation system with vision is proposed. The navigation system using inertial sensors has problems that it is difficult to determine the initial position and the position error increases over time. To solve these problems, a vision system in addition to an inertial navigation system is used, where a camera is attached to a pedestrian. Landmarks are installed to known positions so that the position and orientation of a camera can be computed once a camera views the landmark. Using this position information, estimation errors in the inertial navigation system is compensated.

Study on the Method to Create a Pedestrian Network and Path using Navigation Data for Vehicles (차량용 내비게이션 데이터를 이용한 보행 네트워크 및 경로 생성 기법)

  • Ga, Chill-O;Lee, Won-Hee;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.67-74
    • /
    • 2011
  • In recent years, with increasing utilization of mobile devices such as smartphones, the need for PNS(Pedestrian Navigation Systems) that provide guidance for moving pedestrians is increasing. For the navigation services, road network is the most important component when it comes to creating route and guidance information. In particular, pedestrian network requires modeling methods for more detailed and vast space compared to road network. Therefore, more efficient method is needed to establish pedestrian network that was constructed by existing field survey and manual editing process. This research proposed a pedestrian network creation method appropriate for pedestrians, based on CNS(Car Navigation Systems) data that already has been broadly constructed. Pedestrian network was classified into pedestrian link(sidewalk, side street, walking facility) and openspace link depending on characteristics of walking space, and constructed by applying different methodologies in order to create path that similar to the movements of actual pedestrians. The proposed algorithm is expected to become an alternative for reducing the time and cost of pedestrian network creation.

Sensor Fusion and Error Compensation Algorithm for Pedestrian Navigation System

  • Cho, Seong-Yun;Park, Chan-Gook;Yim, Hwa-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1001-1006
    • /
    • 2003
  • This paper presents the pedestrian navigation algorithm and the error compensation filter. The pedestrian navigation system (PNS) consists of the MEMS inertial sensors, the fluxgate, and the small-size GPS receiver. PNS calculates the navigational information using the signal patterns of the accelerometers. And the navigational information is completed by integration of the patterns, the fluxgate, and the GPS information. In general, PNS can provide the better solution than the low-cost inertial navigation system.

  • PDF

Map-Matching Algorithm for MEMS-Based Pedestrian Dead Reckoning System in the Mobile Device (모바일 장치용 MEMS 기반 보행항법시스템을 위한 맵매칭 알고리즘)

  • Shin, Seung-Hyuck;Kim, Hyun-Wook;Park, Chan-Gook;Choi, Sang-On
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1189-1195
    • /
    • 2008
  • We introduce a MEMS-based pedestrian dead reckoning (PDR) system. A walking navigation algorithm for pedestrians is presented and map-matching algorithm for the navigation system based on dead reckoning (DR) is proposed. The PDR is equipped on the human body and provides the position information of pedestrians. And this is able to be used in ubiquitous sensor network (USN), U-hearth monitoring system, virtual reality (VR) and etc. The PDR detects a step using a novel technique and simultaneously estimates step length. Also an azimuth of the pedestrian is calculated using a fluxgate which is the one of magnetometers. Map-matching algorithm can be formulated to integrate the positioning data with the digital road network data. Map-matching algorithm not only enables the physical location to be identified from navigation system but also improves the positioning accuracy. However most of map-matching algorithms which are developed previously are for the car navigation system (CNS). Therefore they are not appropriate to implement to pedestrian navigation system based on DR system. In this paper, we propose walking navigation system and map-matching algorithm for PDR.

Adaptive Sensor/Heterogeneous Infrastructure Integrated Pedestrian Navigation Technology using Rényi Divergence-based Outlier Detection (Rényi Divergence 기반 이상치 검출을 통한 적응형 센서/이종 인프라 통합 보행자 항법 기술)

  • Jae Uk Kwon;Seong Yun Cho;JaeJun Yoo;SeongHun Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.289-299
    • /
    • 2024
  • In the Pedestrian Dead Reckoning (PDR)/Global Positioning System (GPS)/Wi-Fi-integrated navigation system for indoor/outdoor continuous positioning of pedestrians, the process of detecting outliers in measurements is very important. When accurate location information from measurements is used, reliable correction data can be generated during the fusion filtering process. However, abnormal measurements may occur in certain situations, such as indoor/outdoor transitions, which can degrade filter performance and lead to significant errors in the estimated position. To address this issue, this paper proposes a method for detecting outliers in measurements based on Rényi Divergence (RD). When the deviation of the RD value is large, the measurements are considered outliers, and positioning is performed using only pure PDR. Based on experiments conducted with real data, it was confirmed that outliers were effectively detected for abnormal measurements, leading to an improvement in the performance of pedestrian navigation.

Real-time 3D multi-pedestrian detection and tracking using 3D LiDAR point cloud for mobile robot

  • Ki-In Na;Byungjae Park
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.836-846
    • /
    • 2023
  • Mobile robots are used in modern life; however, object recognition is still insufficient to realize robot navigation in crowded environments. Mobile robots must rapidly and accurately recognize the movements and shapes of pedestrians to navigate safely in pedestrian-rich spaces. This study proposes real-time, accurate, three-dimensional (3D) multi-pedestrian detection and tracking using a 3D light detection and ranging (LiDAR) point cloud in crowded environments. The pedestrian detection quickly segments a sparse 3D point cloud into individual pedestrians using a lightweight convolutional autoencoder and connected-component algorithm. The multi-pedestrian tracking identifies the same pedestrians considering motion and appearance cues in continuing frames. In addition, it estimates pedestrians' dynamic movements with various patterns by adaptively mixing heterogeneous motion models. We evaluate the computational speed and accuracy of each module using the KITTI dataset. We demonstrate that our integrated system, which rapidly and accurately recognizes pedestrian movement and appearance using a sparse 3D LiDAR, is applicable for robot navigation in crowded spaces.

Altitude and Heading Correction of 3D Pedestrian Inertial Navigation

  • Cho, Seong Yun;Lee, Jae Hong;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.189-196
    • /
    • 2021
  • In this paper, we propose techniques to correct the altitude error and heading error of 3D Pedestrian Inertial Navigation (PIN). When a PIN is used to estimate the location of a pedestrian only with an Inetrial Measurement Unit (IMU) without infrastructure, there is a problem in that the location error gradually increases due to the limitation of the observability of the filter. To solve this problem without additional sensors, we propose two techniques in this paper. First, stair walking is recognized in consideration of the altitude difference that may occur during one step. If it is recognized as stair walking, only Zero-velocity UPdaTe (ZUPT) is performed, and if it is recognized as level walking, ZUPT + Altitude Damping (AD) is performed together to correct the altitude error. Second, the straight-line movement direction is calculated through the difference of the estimated position, and the heading error is corrected by matching this information with the link information of the digital map. By applying these techniques, it is verified through real tests that accurate three-dimensional location information of pedestrians can be estimated without infrastructure.

Walking/Non-walking and Indoor/Outdoor Cognitive-based PDR/GPS/WiFi Integrated Pedestrian Navigation for Smartphones

  • Eui Yeon Cho;Jae Uk Kwon;Seong Yun Cho;JaeJun Yoo;Seonghun Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.399-408
    • /
    • 2023
  • In this paper, we propose a solution that enables continuous indoor/outdoor positioning of smartphone users through the integration of Pedestrian Dead Reckoning (PDR) and GPS/WiFi signals. Considering that accurate step detection affects the accuracy of PDR, we propose a Deep Neural Network (DNN)-based technology to distinguish between walking and non-walking signals such as walking in place. Furthermore, in order to integrate PDR with GPS and WiFi signals, a technique is used to select a proper measurement by distinguishing between indoor/outdoor environments based on GPS Dilution of Precision (DOP) information. In addition, we propose a technology to adaptively change the measurement error covariance matrix by detecting measurement outliers that mainly occur in the indoor/outdoor transition section through a residual-based χ2 test. It is verified through experiments on a testbed that these technologies significantly improve the performance of PDR and PDR/GPS/WiFi fingerprinting-based integrated pedestrian navigation.

Improved Social Force Model based on Navigation Points for Crowd Emergent Evacuation

  • Li, Jun;Zhang, Haoxiang;Ni, Zhongrui
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1309-1323
    • /
    • 2020
  • Crowd evacuation simulation is an important research issue for designing reasonable building layouts and planning more effective evacuation routes. The social force model (SFM) is an important pedestrian movement model, and is widely used in crowd evacuation simulations. The model can effectively simulate crowd evacuation behaviors in a simple scene, but for a multi-obstacle scene, the model could result in some undesirable problems, such as pedestrian evacuation trajectory oscillation, pedestrian stagnation and poor evacuation routing. This paper analyzes the causes of these problems and proposes an improved SFM for complex multi-obstacle scenes. The new model adds navigation points and walking shortest route principles to the SFM. Based on the proposed model, a crowd evacuation simulation system is developed, and the crowd evacuation simulation was carried out in various scenes, including some with simple obstacles, as well as those with multi-obstacles. Experiments show that the pedestrians in the proposed model can effectively bypass obstacles and plan reasonable evacuation routes.