• Title/Summary/Keyword: Pedestrian leg

Search Result 19, Processing Time 0.022 seconds

Analysis of Factors Affecting Pedestrian Leg Injury Severity (보행자 다리상해 영향요인 분석)

  • Park, Jae-Hong;Oh, Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.9-15
    • /
    • 2011
  • This study analyzed contributing factors affecting leg injury severity in pedestrian-vehicle crashes. A Binary Logistic Regression (BLR) method was used to identify the factors. Independent variables include characteristics for pedestrian, vehicle, road, and environmental conditions. The leg injury severity is classified into two classes, which are dependent variables in this study, such as 'severe' and 'minor' injuries. Pedestrian age, collision speed, and the height of vehicle were identified as significant factors for the leg injury. The probabilistic outcome of predicting leg injury severity can be effectively used in not only deriving pedestrian-related safety policies but also developing advanced vehicular technologies for pedestrian protection.

Assessing Traffic Safety Benefits of Technical Regulation for Pedestrian Leg (보행자보호를 위한 다리기준의 교통안전 효과평가)

  • Oh, Cheol;Kim, Beom-Il;Kang, Youn-Soo;Shin, Monn-Kyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • This study proposes a methodology to assess the traffic safety benefits of technical regulation for pedestrian leg. Traffic safety benefit is defined as the injury reduction in this study. Actual accident analysis and simulation experiments using LS-Dyna3d are conducted to establish statistical models for developing the methodology. The relationship between collision speed and parameters of the regulation is explored. An application example of the proposed methodology is also presented for more comprehensive understanding. It is believed that the proposed methodology would be greatly utilized in developing various technologies and policies to protect pedestrian.

A Study of Euro NCAP Pedestrian Protection Protocol in Upper Leg Area (유럽 신차 안전도 평가방법을 적용한 보행자 대퇴부 상해 영향 분석)

  • Hyungjoon Oh;Hanchun Cho;Junyi Kim;Seungki Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • Recently Korea and many countries are legislated for pedestrian protection as following the GTR(Global Technical Regulation). Most NCAP organization have been applying pedestrian protection results in their own rating system in individual or overall rating. Euro NCAP agency has been introduced it first. From the beginning, Euro NCAP had assessed occupant and pedestrian protection. It has become to strengthen a pedestrian protection protocol every time published. Korea NCAP also has been rating pedestrian protection with overall rating system. This paper proposed to study new pedestrian protection protocol especially upper leg in order to find injury response based on physical test. On Euro NCAP, the upper leg injury are assessed two kind of value which are bending moment and force.

Headform Impact Test for Pedestrian Safety using Domestic Vehicles (국산자동차의 보행자 보호를 위한 머리모형 충격시험)

  • Yong, Boo-Joong;Kim, Si-Woo;Yoon, Kyong-Han
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.8-13
    • /
    • 2008
  • Since hundreds thousands of pedestrians are killed or injured in car accidents every year, a variety of research efforts have been performed to protect pedestrians in pedestrian-vehicle crashes. The IHRA reports that injuries on the child head, the adult head, and the adult lower leg/knee are the most critical in the crashes. Identifying the current status of international activities on pedestrian protection, this study, in particular, carries out headform impact test using selected domestic vehicles categorized by three groups - Sedan, SUV (Sport Utility Vehicle), and 1 Box (One Box) Vehicle. According to the valuable findings from the test results, this paper proposes a methodology under which the Korean Technical Regulation for protecting pedestrians in pedestrian-vehicle crashes will be developed.

Gait Estimation System for Leg Diagnosis and Rehabilitation using Gyroscopes (하지 진단 및 재활을 위한 각속도계 기반 측정시스템)

  • Lee, Min-Young;Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.866-871
    • /
    • 2010
  • Gait analysis is essential for leg diagnosis and rehabilitation for the patients, the handicapped and the elderly. The use of 3D motion capture device for gait analysis is very common for gait analysis. However, this device has several shortcomings including limited workspace, visibility and high price. Instead, we developed gait estimation system using gyroscopes. This system provides gait information including the number of gaits, stride and walking distance. With four gyroscope (one for each leg's thigh and calf) outputs, the proposed gait modeling estimates the movements of the hip, the knees and the feet. Complete pedestrian localization is implemented with gait information and the heading angle estimated from the rate gyro and the magnetic compass measurements. The developed system is very useful for diagnosis and the rehabilitation of the pedestrian at the hospital. It is also useful for indoor localization of the pedestrians.

An Analysis on Signal Control Efficiency in a Three-Leg Intersection Adopting Pedestrian Push-Button System Following Pedestrian volume (3지 교차로에서 보행자 교통량에 따른 보행자작동신호기를 이용한 신호제어효율에 관한 분석)

  • Kim, Eung-Cheol;Cho, Han-Seon;Jung, Dong-Woo;Kim, Hyoung-Soo
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.121-128
    • /
    • 2009
  • This study has proposed the signal operating system to use both semi-actuated signal control and pedestrian push-button as a way to make up for the problems of 3 leg intersections which are operated inefficiently in the signal operation, one of the methods of traffic operations. In case of the semi-actuated signal control, it can reduce delay inside the intersection by serving to uncongested traffic on the main road where there is not much traffic volume on the secondary road and push-button signal can reduce unnecessary waiting time it could happen to vehicles by operating it though there is no pedestrian. Quantitative analysis was tried regarding the average delay reduction per vehicle using VISSIM, microscopic simulation program regarding how much effect it has compared with the existing signal control system and semi-actuated signal control system when the above two advantages are collected. The field test was performed for one three-leg intersection of Incheon. According to respectively signal control method pedestrian traffic changed and executed a sensitivity analysis. The result which compares the average delay time per a vehicle of scenarios, the signal control method of using the pedestrian push-button system in comparison with the fixed signal control method showed to decrease effect of a minimum 3.7 second (10%), a maximum 5.8 second (16%). When the pedestrian traffic volume was 20% or less of the measurement traffic volume, The signal control method of using the pedestrian push-button system appeared to be more efficient the semi-actuated signal control with object intersection.

  • PDF

Development and Feasible Study of Train to Pedestrian Protection Airbag (철도차량 접촉사고자 보호 에어백 개발연구)

  • Yoo, Wan-Dong;Ham, Joung-Sik;Cho, Kyue-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.82-91
    • /
    • 2012
  • This paper deals with the development and feasible study of the train to pedestrian protection airbag. The concept of the airbag system is to protect the pedestrian like as workers on railroad. The airbag system includes cushions, gas generators, a housing, sliding fixture, anti-bouncing airbag, and a leg protection bumper. Those things were designed and fabricated. The performance of the airbag system was evaluated in the sense of the static deployment test, drop test, dynamic motion test and field(train level) test. The deployment logic, TTF(Time to fire), and the inner pressure of the cushion were also investigated for the airbag.

Impact of Musculoskeletal Pain on Pedestrian Crossing among the Aged (노인의 근육뼈대계 통증이 횡단보도 보행에 미치는 영향)

  • Um, Ki-Mai;Wang, Joong-San
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.12
    • /
    • pp.370-377
    • /
    • 2015
  • This study attempted to examine the impact of musculoskeletal pain on pedestrian crossing using a sample that consisted of 282 aged people. The research method involved an examination of the musculoskeletal pain of the elderly using a musculoskeletal questionnaire. The subjects were also told to walk across four- and six-lane pedestrian crossings while their gait velocity, step count, and step time were measured. The research results for pain by body regions indicated that waist pain had the highest complaint rate(33.3%). When there was musculoskeletal pain in the waist and leg/foot, gait velocity also decreased and step count and step time increased. However, usage of a cane turned out to have a positive impact on pedestrian crossing. Nevertheless, no significant relationship between waist and leg/foot pain and pedestrian crossing characteristics was found. We expect there will be continuous further studies on the subject of diverse physical problems of the aged and pedestrian crossing.

A Study on the Pedestrian Detection on the Road Using Machine Vision (머신비전을 이용한 도로상의 보행자 검출에 관한 연구)

  • Lee, Byung-Ryong;Truong, Quoc Bao;Kim, Hyoung-Seok;Bae, Yong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.490-498
    • /
    • 2011
  • In this paper, we present a two-stage vision-based approach to detect multi views of pedestrian in road scene images. The first stage is HG (Hypothesis Generation), in which potential pedestrian are hypothesized. During the hypothesis generation step, we use a vertical, horizontal edge map, and different colors between road background and pedestrian's clothes to determine the leg position of pedestrian, then a novel symmetry peaks processing is performed to define how many pedestrians is covered in one potential candidate region. Finally, the real candidate region where pedestrian exists will be constructed. The second stage is HV (Hypothesis Verification). In this stage, all hypotheses are verified by Support Vector Machine for classification, which is robust for multi views of pedestrian detection and recognition problems.