• 제목/요약/키워드: Pedestrian Tracking

검색결과 76건 처리시간 0.027초

A Tracking-by-Detection System for Pedestrian Tracking Using Deep Learning Technique and Color Information

  • Truong, Mai Thanh Nhat;Kim, Sanghoon
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.1017-1028
    • /
    • 2019
  • Pedestrian tracking is a particular object tracking problem and an important component in various vision-based applications, such as autonomous cars and surveillance systems. Following several years of development, pedestrian tracking in videos remains challenging, owing to the diversity of object appearances and surrounding environments. In this research, we proposed a tracking-by-detection system for pedestrian tracking, which incorporates a convolutional neural network (CNN) and color information. Pedestrians in video frames are localized using a CNN-based algorithm, and then detected pedestrians are assigned to their corresponding tracklets based on similarities between color distributions. The experimental results show that our system is able to overcome various difficulties to produce highly accurate tracking results.

Multi-feature local sparse representation for infrared pedestrian tracking

  • Wang, Xin;Xu, Lingling;Ning, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1464-1480
    • /
    • 2019
  • Robust tracking of infrared (IR) pedestrian targets with various backgrounds, e.g. appearance changes, illumination variations, and background disturbances, is a great challenge in the infrared image processing field. In the paper, we address a new tracking method for IR pedestrian targets via multi-feature local sparse representation (SR), which consists of three important modules. In the first module, a multi-feature local SR model is constructed. Considering the characterization of infrared pedestrian targets, the gray and edge features are first extracted from all target templates, and then fused into the model learning process. In the second module, an effective tracker is proposed via the learned model. To improve the computational efficiency, a sliding window mechanism with multiple scales is first used to scan the current frame to sample the target candidates. Then, the candidates are recognized via sparse reconstruction residual analysis. In the third module, an adaptive dictionary update approach is designed to further improve the tracking performance. The results demonstrate that our method outperforms several classical methods for infrared pedestrian tracking.

디지털 사이니지의 광고효과 측정을 위한 평균 필터 추적 기반 유동인구 수 측정 시스템 (Pedestrian Counting System based on Average Filter Tracking for Measuring Advertisement Effectiveness of Digital Signage)

  • 김기용;윤경로
    • 방송공학회논문지
    • /
    • 제21권4호
    • /
    • pp.493-505
    • /
    • 2016
  • 컴퓨터 비전이나 감시영상 시스템에서 유동인구 수 측정은 안전, 스케줄링, 광고효과 측면에서 중요한 과제 중 하나이다. 유동인구 수 측정은 조명변화, 부분적인 폐색, 중첩, 사람검출과 같은 다양한 어려움을 겪고 있다. 가장 큰 문제점은 혼잡한 상황에서 추적되는 객체에 대한 폐색과 중첩이다. 정확한 유동인구 수 측정을 위해 폐색과 중첩은 반드시 해결해야 할 과제이다. 본 논문에서는 기존의 보행자 추적 방법을 개선한 효율적인 유동인구 수 측정 시스템을 제안한다. 기존의 보행자 추적과 달리, 제안된 방법은 평균 필터 추적방법을 적용하여 성능을 향상시킬 수 있음을 보인다. 또한 객체 추적의 성능향상을 위한 프레임 보상, 아웃라이어 제거를 통해서 추적을 개선한다. 그와 동시에 제안된 시스템은 추적된 객체의 다양한 정보를 저장한다. 데이터 셋 S6와 데이터 셋 S7에 대하여 유동인구 수 측정 정확도를 향상시키고 에러율을 줄인다. 또한 제안된 방법은 실시간으로 평균 80fps의 검출을 제공한다.

Multi-pedestrian tracking using deep learning technique and tracklet assignment

  • Truong, Mai Thanh Nhat;Kim, Sanghoon
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.808-810
    • /
    • 2018
  • Pedestrian tracking is a particular problem of object tracking, and an important component in various vision-based applications, such as autonomous cars or surveillance systems. After several years of development, pedestrian tracking in videos is still a challenging problem because of various visual properties of objects and surrounding environment. In this research, we propose a tracking-by-detection system for pedestrian tracking, which incorporates Convolutional Neural Network (CNN) and color information. Pedestrians in video frames are localized by a CNN, then detected pedestrians are assigned to their corresponding tracklets based on similarities in color distributions. The experimental results show that our system was able to overcome various difficulties to produce highly accurate tracking results.

소형 이동 로봇의 사람 추적 성능 개선을 위한 휠 오도메트리 기반 실시간 보정에 관한 연구 (Real-Time Correction Based on wheel Odometry to Improve Pedestrian Tracking Performance in Small Mobile Robot)

  • 박재훈;안민성;한재권
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.124-132
    • /
    • 2022
  • With growth in intelligence of mobile robots, interaction with humans is emerging as a very important issue for mobile robots and the pedestrian tracking technique following the designated person is adopted in many cases in a way that interacts with humans. Among the existing multi-object tracking techniques for pedestrian tracking, Simple Online and Realtime Tracking (SORT) is suitable for small mobile robots that require real-time processing while having limited computational performance. However, SORT fails to reflect changes in object detection values caused by the movement of the mobile robot, resulting in poor tracking performance. In order to solve this performance degradation, this paper proposes a more stable pedestrian tracking algorithm by correcting object tracking errors caused by robot movement in real time using wheel odometry information of a mobile robot and dynamically managing the survival period of the tracker that tracks the object. In addition, the experimental results show that the proposed methodology using data collected from actual mobile robots maintains real-time and has improved tracking accuracy with resistance to the movement of the mobile robot.

HOG-PCA와 객체 추적 알고리즘을 이용한 보행자 검출 및 추적 시스템 설계 (Design of Pedestrian Detection and Tracking System Using HOG-PCA and Object Tracking Algorithm)

  • 전필한;박찬준;김진율;오성권
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.682-691
    • /
    • 2017
  • In this paper, we propose the fusion design methodology of both pedestrian detection and object tracking system realized with the aid of HOG-PCA based RBFNN pattern classifier. The proposed system includes detection and tracking parts. In the detection part, HOG features are extracted from input images for pedestrian detection. Dimension reduction is also dealt with in order to improve detection performance as well as processing speed by using PCA which is known as a typical dimension reduction method. The reduced features can be used as the input of the FCM-based RBFNNs pattern classifier to carry out the pedestrian detection. FCM-based RBFNNs pattern classifier consists of condition, conclusion, and inference parts. FCM clustering algorithm is used as the activation function of hidden layer. In the conclusion part of network, polynomial functions such as constant, linear, quadratic and modified quadratic are regarded as connection weights and their coefficients of polynomial function are estimated by LSE-based learning. In the tracking part, object tracking algorithms such as mean shift(MS) and cam shift(CS) leads to trace one of the pedestrian candidates nominated in the detection part. Finally, INRIA person database is used in order to evaluate the performance of the pedestrian detection of the proposed system while MIT pedestrian video as well as indoor and outdoor videos obtained from IC&CI laboratory in Suwon University are exploited to evaluate the performance of tracking.

GPU를 이용한 야간 보행자 검출과 추적 시스템 구현 (Implementation of Pedestrian Detection and Tracking with GPU at Night-time)

  • 최범준;윤병우;송종관;박장식
    • 방송공학회논문지
    • /
    • 제20권3호
    • /
    • pp.421-429
    • /
    • 2015
  • 이 논문은 적외선 영상을 이용하여 보행자를 검출하고 추적하는 방법에 관한 것이다. 영상기반 보행 검출 및 추적 처리 속도를 개선하기 위하여 병렬처리언어인 CUDA(Computer Unified Device Architecture)를 활용한다. 보행자 검출은 하르 유사 특징을 기반으로 Adaboost 알고리즘을 적용한다. Adaboost 분류는 적외선 영상으로 제작한 데이터셋을 이용하여 훈련한다. Adaboost 분류기로 보행자를 검출한 후, HSV 히스토그램을 특징점으로 파티클 필터를 이용하여 보행자를 추적하는 방법을 제안한다. 제안하는 검출 및 추적 방법을 Linux 환경에서 소프트웨어를 개발할 수 있는 NVIDIA의 Jetson TK1 개발보드 상에 구현하였다. 이 논문에서는 보행자 검출 및 추적을 CUDA 개발환경인 GPU를 이용하여 병렬처리한 결과를 나타내었다. GPU를 이용한 보행자 검출과 추적 처리 속도가 CPU 처리속도에 비하여 약 6 배 빠른 것을 확인할 수 있다.

Real-time 3D multi-pedestrian detection and tracking using 3D LiDAR point cloud for mobile robot

  • Ki-In Na;Byungjae Park
    • ETRI Journal
    • /
    • 제45권5호
    • /
    • pp.836-846
    • /
    • 2023
  • Mobile robots are used in modern life; however, object recognition is still insufficient to realize robot navigation in crowded environments. Mobile robots must rapidly and accurately recognize the movements and shapes of pedestrians to navigate safely in pedestrian-rich spaces. This study proposes real-time, accurate, three-dimensional (3D) multi-pedestrian detection and tracking using a 3D light detection and ranging (LiDAR) point cloud in crowded environments. The pedestrian detection quickly segments a sparse 3D point cloud into individual pedestrians using a lightweight convolutional autoencoder and connected-component algorithm. The multi-pedestrian tracking identifies the same pedestrians considering motion and appearance cues in continuing frames. In addition, it estimates pedestrians' dynamic movements with various patterns by adaptively mixing heterogeneous motion models. We evaluate the computational speed and accuracy of each module using the KITTI dataset. We demonstrate that our integrated system, which rapidly and accurately recognizes pedestrian movement and appearance using a sparse 3D LiDAR, is applicable for robot navigation in crowded spaces.

A Mobile Agent-based Computing Environment for Pedestrian Tracking Simulation

  • Xie, Rong;Shibasaki, Ryosuke
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.354-356
    • /
    • 2003
  • The study of pedestrian behavior covers wide topics, including way finding, choice and decision make, as well as spatial cognition and environmental perception. To address the problem, simulation is now put forward as suitable technique and method for analyzing human spatial behavior. In the paper we present a development architecture for simulating tracking pedestrian in a distributed environment. We introduce and explore the potential of using mobile agent-enabled distributed implementation model as a tool for development and implementation of the simulation. Three kinds of mobile agents are designed for implementation of managing and querying data of pedestrian. Finally, simulation result of JR 10,000 passengers’ movement is developed and implemented as a case study.

  • PDF