Huang, Shaonian;Huang, Dongjun;Khuhroa, Mansoor Ahmed
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.8
/
pp.3769-3789
/
2018
Social pedestrian groups are the basic elements that constitute a crowd; therefore, detection of such groups is scientifically important for modeling social behavior, as well as practically useful for crowd video understanding. A social group refers to a cluster of members who tend to keep similar motion state for a sustained period of time. One of the main challenges of social group detection arises from the complex dynamic variations of crowd patterns. Therefore, most works model dynamic groups to analysis the crowd behavior, ignoring the existence of stationary groups in crowd scene. However, in this paper, we propose a novel unified framework for detecting social pedestrian groups in crowd videos, including dynamic and stationary pedestrian groups, based on spatiotemporal-oriented energy measurements. Dynamic pedestrian groups are hierarchically clustered based on energy flow similarities and trajectory motion correlations between the atomic groups extracted from principal spatiotemporal-oriented energies. Furthermore, the probability distribution of static spatiotemporal-oriented energies is modeled to detect stationary pedestrian groups. Extensive experiments on challenging datasets demonstrate that our method can achieve superior results for social pedestrian group detection and crowd video classification.
In this paper, we suggest an advanced algorithm, to recognize pedestrian/non-pedestrian using differential haar-like feature, which applies Adaboost algorithm to make a strong classification from weak classifications. First, we extract two feature vectors: horizontal haar-like feature and vertical haar-like feature. For the next, we calculate the proposed feature vector using differential haar-like method. And then, a strong classification needs to be obtained from weak classifications for composite recognition method using the differential area of horizontal and vertical haar-like. In the proposed method, we use one feature vector and one strong classification for the first stage of recognition. Based on our experiment, the proposed algorithm shows higher recognition rate compared to the traditional method for the pedestrian and non-pedestrian.
Korea Claim Adjustor Association(KCAA) defines the near pedestrian crossing accidents as those accidents that occurred in the area within 25m from pedestrian crossing on the arterial road and within 15m from pedestrian crossing on other classes of road. Accidents between pedestrian crossing and stop line are classified as the accident near pedestrian crossing. Reviewing of current statute and court precedent, three kinds of traffic accidents which are accidents occurred in the pedestrian crossing. near pedestrian crossing and the area between pedestrian crossing and stop line. should be distinguished by different pedestrian contributory negligence. To find out how different they are. we surveyed transportation society members about the contributory negligence of traffic accidents between pedestrian crossing and stop line and the results are as follows : (1) The current two classification of pedestrian crossing accidents and near pedestrian crossing accidents should be changed to three classification of pedestrian crossing accidents that includes accidents on pedestrian crossing, near pedestrian crossing and between pedestrian crossing and the stop line. (2) For the pedestrian's contributory negligence, the least reasonability to pedestrian is accident on the pedestrian crossing. The next one is the accident between pedestrian crossing and stop line and the last is the accident near pedestrian crossing. (3) Pedestrian contributory negligence for accident by space is recommended as 〈table 8〉, 〈table 9〉, 〈table 10〉. (4) Contributory negligence rate of the accident on the pedestrian crossing during red light should be modified to be less than that of near pedestrian crossing.
Recently, with the development of deep learning technology, research on pedestrian attribute recognition technology using deep neural networks has been actively conducted. Existing pedestrian attribute recognition techniques can be obtained in such a way as global-based, regional-area-based, visual attention-based, sequential prediction-based, and newly designed loss function-based, depending on how pedestrian attributes are detected. It is known that the performance of these pedestrian attribute recognition technologies varies greatly depending on the type of backbone network that constitutes the deep neural networks model. Therefore, in this paper, several backbone networks are applied to the baseline pedestrian attribute recognition model and the performance changes of the model are analyzed. In this paper, the analysis is conducted using Resnet34, Resnet50, Resnet101, Swin-tiny, and Swinv2-tiny, which are representative backbone networks used in the fields of image classification, object detection, etc. Furthermore, this paper analyzes the change in time complexity when inferencing each backbone network using a CPU and a GPU.
In this paper, we suggest an advanced algorithm, to recognize pedestrian/non-pedestrian using second-stage cascade method, which applies Adaboost algorithm to make a strong classification from weak classifications. First, we extract two feature vectors: (i) Histogram of Oriented Gradient (HOG) which includes gradient information and differential magnitude; (ii) Curvature-HOG which is based on four different curvature features per pixel. And then, a strong classification needs to be obtained from weak classifications for composite recognition method using both HOG and curvature-HOG. In the proposed method, we use one feature vector and one strong classification for the first stage of recognition. For the recognition-failed image, the other feature and strong classification will be used for the second stage of recognition. Based on our experiment, the proposed algorithm shows higher recognition rate compared to the traditional method.
Journal of Institute of Control, Robotics and Systems
/
v.17
no.5
/
pp.490-498
/
2011
In this paper, we present a two-stage vision-based approach to detect multi views of pedestrian in road scene images. The first stage is HG (Hypothesis Generation), in which potential pedestrian are hypothesized. During the hypothesis generation step, we use a vertical, horizontal edge map, and different colors between road background and pedestrian's clothes to determine the leg position of pedestrian, then a novel symmetry peaks processing is performed to define how many pedestrians is covered in one potential candidate region. Finally, the real candidate region where pedestrian exists will be constructed. The second stage is HV (Hypothesis Verification). In this stage, all hypotheses are verified by Support Vector Machine for classification, which is robust for multi views of pedestrian detection and recognition problems.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.7
/
pp.2321-2338
/
2021
Compared with vehicle trajectories, pedestrian trajectories have stronger degrees of freedom and complexity, which poses a higher challenge to trajectory prediction tasks. This paper designs a mode to divide the trajectory of pedestrians at a traffic intersection, which converts the trajectory regression problem into a trajectory classification problem. This paper builds a deep model for pedestrian trajectory prediction at intersections for the task of pedestrian short-term trajectory prediction. The model calculates the spatial correlation and temporal dependence of the trajectory. More importantly, it captures the interactive features among pedestrians through the Attention mechanism. In order to improve the training speed, the model is composed of pure convolutional networks. This design overcomes the single-step calculation mode of the traditional recurrent neural network. The experiment uses Vulnerable Road Users trajectory dataset for related modeling and evaluation work. Compared with the existing models of pedestrian trajectory prediction, the model proposed in this paper has advantages in terms of evaluation indicators, training speed and the number of model parameters.
IEMEK Journal of Embedded Systems and Applications
/
v.8
no.2
/
pp.121-128
/
2013
There have been various research efforts for pedestrian recognition in embedded imaging systems. However, many suffer from their heavy computational complexities. SVM classification method has been widely used for pedestrian recognition. The reduction of candidate region is crucial for low-complexity scheme. In this paper, We propose a real time HOG based pedestrian detection system on GPU which images are captured by a pair of cameras. To speed up humans on road detection, the proposed method reduces a number of detection windows with disparity-search and near-search algorithm and uses the GPU and the NVIDIA CUDA framework. This method can be achieved speedups of 20% or more compared to the recent GPU implementations. The effectiveness of our algorithm is demonstrated in terms of the processing time and the detection performance.
The Journal of the Korea institute of electronic communication sciences
/
v.13
no.1
/
pp.169-174
/
2018
There are many CCTV cameras connected to the video surveillance and monitoring center for the safety of citizens, and it is difficult for a few monitoring agents to monitor many channels of videos. In this paper, we propose an intelligent video surveillance system utilizing a safety map to efficiently monitor many channels of CCTV camera videos. The safety map establishes the frequency of crime occurrence as a database, expresses the degree of crime risk and makes it possible for agents of the video surveillance center to pay attention when a woman enters the crime risk area. The proposed gender classification method is processed in the order of pedestrian detection, tracking and classification with deep training. The pedestrian detection and tracking uses Adaboost algorithm and probabilistic data association filter, respectively. In order to classify the gender of the pedestrian, relatively simple AlexNet is applied to determine gender. Experimental results show that the proposed gender classification method is more effective than the conventional algorithm. In addition, the results of implementation of intelligent video security system combined with safety map are introduced.
Journal of the Architectural Institute of Korea Planning & Design
/
v.35
no.2
/
pp.3-10
/
2019
The purpose of the study is to survey the effective methodology of composition and connection for the third pedestrian routes in mixed-use building by case studies. The study is performed as follows: First of all, pedestrian routes are classified into malling route, evacuation route, and the Third route. Secondly, case studies are conducted based on the classification. Thirdly, it is investigated about the composition and connection of the malling and the Third pedestrian route. The investigation is focused on gate, path, central area, vertical circulation(EV and escalator) and the four circulation elements. Finally, the effective methodology is extracted for setting the Third route in mixed-use buildings. The conclusion of the study is as follows: The enhancement of consistency and connection between the main route and the Third route is important for providing convenient paths especially to users who needs shortcut, EV/ES users. Additionally, the connections between EV and gate, between shortcut and EV/ES should be increased to enable users choosing their path as needed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.