• Title/Summary/Keyword: Pedestrian Attribute Recognition

Search Result 2, Processing Time 0.022 seconds

Analyzing DNN Model Performance Depending on Backbone Network (백본 네트워크에 따른 사람 속성 검출 모델의 성능 변화 분석)

  • Chun-Su Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.128-132
    • /
    • 2023
  • Recently, with the development of deep learning technology, research on pedestrian attribute recognition technology using deep neural networks has been actively conducted. Existing pedestrian attribute recognition techniques can be obtained in such a way as global-based, regional-area-based, visual attention-based, sequential prediction-based, and newly designed loss function-based, depending on how pedestrian attributes are detected. It is known that the performance of these pedestrian attribute recognition technologies varies greatly depending on the type of backbone network that constitutes the deep neural networks model. Therefore, in this paper, several backbone networks are applied to the baseline pedestrian attribute recognition model and the performance changes of the model are analyzed. In this paper, the analysis is conducted using Resnet34, Resnet50, Resnet101, Swin-tiny, and Swinv2-tiny, which are representative backbone networks used in the fields of image classification, object detection, etc. Furthermore, this paper analyzes the change in time complexity when inferencing each backbone network using a CPU and a GPU.

  • PDF

Improved Inference for Human Attribute Recognition using Historical Video Frames

  • Ha, Hoang Van;Lee, Jong Weon;Park, Chun-Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.120-124
    • /
    • 2021
  • Recently, human attribute recognition (HAR) attracts a lot of attention due to its wide application in video surveillance systems. Recent deep-learning-based solutions for HAR require time-consuming training processes. In this paper, we propose a post-processing technique that utilizes the historical video frames to improve prediction results without invoking re-training or modifying existing deep-learning-based classifiers. Experiment results on a large-scale benchmark dataset show the effectiveness of our proposed method.