• 제목/요약/키워드: Pedaling speed

검색결과 9건 처리시간 0.03초

비접촉식 자전거 발전기 및 충전 시스템 개발에 관한 연구 (A study on the contactless generator and recharge system for a bicyle)

  • 박황근;원시태
    • Design & Manufacturing
    • /
    • 제11권2호
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, the non-contact type bicycle generator system considering the recharge is developed to use the eco-friendly energy source when the bicycle is operating. The following three main factors are considered in this study. One of factors is that the intensity of the rotating magnet is in the range of 2,700~4,300 [Gause]. The next factor is that the separation distance of rotating magnet and bicycle rim is in the range of 1.5-3.0 mm. The last factor is that the pedaling speed is in the range of 55 RPM [Wheel speed 5.6Km]~150 RPM [Wheel speed 15.25Km] consirering with the 5 staged gear transmission. The obtained results are as followed. (1) The generator output voltage gradually increases from 3V to 10V with the pedaling speed increases, at the separation distance is less than 2.5 mm and the operating voltage of the LED lamp is generated at a pedaling speed of 60 RPM or more. (2) The output current of the generator increases from 20mA to 40mA with the pedaling speed increases, at a separation distance is less than 2.0 mm and the operating current of the LED lamp is generated at a pedaling speed of 60 RPM or more. (3) When the separation distance was 3.0 mm, the output voltage and current are significantly lower than those of the bicycle LED lamp is generated. (4) The charging time is expected to be 12.24 ~ 17.65 hours when the magnitude of the magnet is 3,400[Gauss] at a pedaling speed of 55 RPM or more. (5) As a result of this study, it is thought that the non-contact type bicycle generator system considering the recharge can replace the conventional friction power generation system.

Correlation Between Knee Muscle Strength and Maximal Cycling Speed Measured Using 3D Depth Camera in Virtual Reality Environment

  • Kim, Ye Jin;Jeon, Hye-seon;Park, Joo-hee;Moon, Gyeong-Ah;Wang, Yixin
    • 한국전문물리치료학회지
    • /
    • 제29권4호
    • /
    • pp.262-268
    • /
    • 2022
  • Background: Virtual reality (VR) programs based on motion capture camera are the most convenient and cost-effective approaches for remote rehabilitation. Assessment of physical function is critical for providing optimal VR rehabilitation training; however, direct muscle strength measurement using camera-based kinematic data is impracticable. Therefore, it is necessary to develop a method to indirectly estimate the muscle strength of users from the value obtained using a motion capture camera. Objects: The purpose of this study was to determine whether the pedaling speed converted using the VR engine from the captured foot position data in the VR environment can be used as an indirect way to evaluate knee muscle strength, and to investigate the validity and reliability of a camera-based VR program. Methods: Thirty healthy adults were included in this study. Each subject performed a 15-second maximum pedaling test in the VR and built-in speedometer modes. In the VR speedometer mode, a motion capture camera was used to detect the position of the ankle joints and automatically calculate the pedaling speed. An isokinetic dynamometer was used to assess the isometric and isokinetic peak torques of knee flexion and extension. Results: The pedaling speeds in VR and built-in speedometer modes revealed a significantly high positive correlation (r = 0.922). In addition, the intra-rater reliability of the pedaling speed in the VR speedometer mode was good (ICC [intraclass correlation coefficient] = 0.685). The results of the Pearson correlation analysis revealed a significant moderate positive correlation between the pedaling speed of the VR speedometer and the peak torque of knee isokinetic flexion (r = 0.639) and extension (r = 0.598). Conclusion: This study suggests the potential benefits of measuring the maximum pedaling speed using 3D depth camera in a VR environment as an indirect assessment of muscle strength. However, technological improvements must be followed to obtain more accurate estimation of muscle strength from the VR cycling test.

정.역구동 페달링에 따른 자전거 등판 시의 근전도 분석 (Electromyographic Analysis of a Uphill Propulsion of a Bicycle by Forward.Backward Pedaling)

  • 신응수;김현중
    • 한국운동역학회지
    • /
    • 제18권4호
    • /
    • pp.171-177
    • /
    • 2008
  • 본 논문에서는 자전거의 언덕 등판 시 페달릴 방향이 근육의 활성도에 미치는 영향을 분석하였다. 이를 위하여 정역구동이 가능한 특수유성기어와 언덕 경사각에 따른 마찰력을 후륜에 인가할 수 있는 자기제동장치가 장착된 자전거로 실험 장치를 구성하고 3차원 동작분석과 근전도 분석을 수행하였다. 근활성도는 장단지근, 대퇴사두근, 전경골근, 비장근에 대해서 측정하였으며 언덕 경사는 $0^{\circ}$에서 $6^{\circ}$까지 변화시켰다. 근전도 신호는 우선 평균제곱법을 적용하여 25 ms마다 평균값을 구하고 50개의 연속된 주기에 대한 ensemble 곡선을 구하여 분석하였다. 그 결과로부터 페달링 방향의 변화는 자전거 주행 속도 및 인체하지 근육의 활성도에 큰 영향을 미치는 것을 확인하였다. 구체적으로는 크랭크 각도에 따른 근활성도의 패턴 및 최대값의 분포에 있어 정방향 구동과 역방향 구동은 큰 차이를 보이는데 근활성도의 최대값은 정구동으로 페달링할 때가 역 구동으로 페달링할 때보다 큰 반면 근활성도의 평균값은 장단지근과 대퇴사두근에서는 정구등 페달링이 더 높게 나타나고 전경골근과 비장근에서는 역구동 페달링이 더 높게 나타나며 주행 등판각이 증가하면 페달링 방향이 바뀜에 따른 근활성도 최대값의 차이는 더욱 커진다.

운전 시 브레이크 페달링 속도가 하지 근수축 개시시간에 미치는 영향 (The effects of brake pedaling speed on onset time of muscle contraction in the lower extremity during driving task)

  • 성길희;황윤태;박지원;신화경
    • The Journal of Korean Physical Therapy
    • /
    • 제23권1호
    • /
    • pp.7-11
    • /
    • 2011
  • Purpose: Driving is essential to maintain independent living status in modern times. Many patients want to know when they can drive again, but it's only possible if they have the ability to control lower extremity muscles. In this study, we compared the effects of velocity on onset time of lower extremity muscles during driving tasks. Methods: Twelve participants (5 male, 7 female) were enrolled. EMGs were used to test the onset time of lower extremity muscles; tibialis anterior, soleus, rectus femoris. To analyze the data, we used two way ANOVA. Results: According to brake pedaling velocity, there was a significant difference in brake response time (p<0.05). Further, when comparing the lower extremity muscles, there was a significant difference in onset time (p<0.05). The order of muscle recruitment was tibialis anterior, rectus femoris, and soleus for achieving maximal velocity, but the order was rectus femoris, tibialis anterior, soleus for achieving submaximal velocity. Conclusion: Brake pedaling velocity has significant effects on onset time of muscle contractions in the lower extremities. We suggested that a future study needs more subjects and more detailed research such as evaluat-ions of visuo-motor coordination and fine motor dexterity.

자전거 운동 중 클릿의 위치 변화에 따른 페달링 수행능력 비교 (The Comparison of Pedalling Performance to according to the Position of Shoe Cleat in Triathletes During Cycling)

  • 박찬호;최보경;허보섭;김용재
    • 수산해양교육연구
    • /
    • 제29권2호
    • /
    • pp.537-543
    • /
    • 2017
  • The purpose of this research is to investigate the effects of different shoe-cleat position on pedalling performance. Four male elite triathletes(age: $22.00{\times}2.16years$, height: $175.12{\pm}8.06cm$, weight: $71.20{\pm}7.89kg$, body fat: $16.62{\pm}3.56%$) and three female elite triathletes(age: $20.00{\pm}1years$, height: $158.40{\pm}2.42cm$, weight: $51.30{\pm}3.89kg$, body fat: $19.26{\pm}2.28%$) participated in 10km time trial and 30sec time trial pedaling tests with the individual time trials based on different shoe-cleat position(cleat front: CF, cleat back: CB). The subjects performed one trial with each type of shoe-cleat position. Maximal power output and average speed were not significantly different during 30s time trial in CF compared with CB. Average power, RPM, and HR were not significantly different during 10k time trial in CF compared with CB. Split time in 1km, 5km, 9km were significantly reduced during 10k time trial in CB compared with CF. We conclude that there was performance advantage in CB using shoe-cleat back position in comparison with CF using shoe-cleat front position.

자전거 주행시 경사 안정성에 대한 실험적 분석 (Experimental Analysis of Tilt-stability in Bicycling)

  • 송준걸;신재철;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.604-609
    • /
    • 2002
  • In development of an advanced bicycle simulator, the investigation of the interactions between bicycle and rider during cycling is paramount important because bicycle is a two-wheeled human-powered vehicle. Tn this work, the tilt stability. among various interactions, of bicycling is investigated experimentally, In the experiments, the tilt angles of the bicycle, riders body and head are measured, as the riding p;1th and the speed are varied. Subjects are asked to ride along four typical paths on rigid flat ground : the straight, C-curved, S-curved and circle paths. The results from extensive experiments with different subjects can be summarized as : 1) The tilt angles of bicycle and rider are almost out of phase during pedaling along the straight path. 2) The bicycle tilt angle is nearly proportional to the square of bicycle speed for the straight and curved paths, and to the curvature for the curved paths. The head tilt angle is the biggest and the body tilt angle is the smallest for the straight path, but the tendency is reversed for the C-curved path. During the curve maneuvering, the rider's head tends to tilt by less than 40% of the bicycle tilt angle.

  • PDF

관상동맥질환자의 운동요법을 위한 심장 박동궤환조절기의 설계 (A Design of Heart Rate Feedback Controller for the Regimen of Physical Activity of the Patient with Coronary Artery Disease)

  • 김진일;박종국
    • 대한의용생체공학회:의공학회지
    • /
    • 제3권1호
    • /
    • pp.23-30
    • /
    • 1982
  • The regimen of physical activity of the patient with coronary artery disease requires that he should not overshoot the prescribed heart rate based on his age, health and fuctional status of the heart during his exercise. The step input of work load, however, involves a great danger of overshooting. The purpose of this study was to desigil a system that makes it passible for a subject to check the overshooting. This system shows on tile H.R-meter, the amplified and filtered heart-rate signal of the subject received by the photosensor on his earlobe, puts it in the lead coinpensational circuit where it is conpared with the reference input signal(=the presfribed heart rate). The output of the lead compensational circuit works the aull meter. By means of this null meter, the subject knows whether he is overshooting the prescribed heart rate or not. He can continue the natl meter needle at the'Zero'position through the control of the speed of pedaling of the bicycle ergometer, An experimental test, made on eight men and four women in healthy condition, showed that 91. 7% of them vlaintained the stable heart rate and that the overshooting of the desired heart rate did not exceed $\pm$2BPM. According to the result of this experiment, since the heart rate feedback controller makes it possible for the subject to take the prescribed exercise based not on the work load but on the heart rate which incidentally is inexpensive, it can be made use of as the instrument for the regimen of pflysical activity by the patient with coronary artery disease.

  • PDF

자세균형 재활 훈련을 위한 가상 자전거 시뮬레이터 개발 (Development of a Virtual Bicycle Simulator for the Rehabilitation Training of Postural Balance)

  • 정성환;박용군;권대규;김남균
    • 한국정밀공학회지
    • /
    • 제24권10호
    • /
    • pp.137-145
    • /
    • 2007
  • The purpose of this study is developing a virtual bicycle system for improving the ability of postural balance control for adults in various age groups. The system consists of an exercise bicycle that allows tilt in accordance with the postural balance of the subject in the system, a visual display that shows virtual road, and a visual feedback system. The rider of the system tries to maintain balance on the bicycle with a visual feedback of a virtual road while the pedaling speed, the heading direction, and various weight distribution information are updated to the subject as visual feedbacks in the display. A series of experiments were performed with various subjects to find the factors related to postural balance control in the system. The related parameters obtained were weight shift, magnitude of the deviation from the center of the virtual road, and variables related to the movement of the center of pressure. The results found that the ability to control postural balance in the system improved with the presentation of visual feedback information of the distribution of weight. It was also found that the general performance of the subject on balance in the system improved after ten days long training. The results show that the newly developed system can be used for the diagnosis of postural balance as well as for the stimulation of various senses such as vision and somatic sense in the field of rehabilitation training.

편측 무릎인공관절수술 후 초기 재활과정에서 다리 에르고미터 적용 시 양다리 근활성도 비교 (Comparison of Muscle Activity of Both Lower Extremities When a Lower Extremity Cycle Ergometer is Applied During Initial Rehabilitation After Unilateral Total Knee Arthroplasty)

  • 최은지;이상열;석힘;윤성영;허재석;이승훈
    • PNF and Movement
    • /
    • 제20권2호
    • /
    • pp.179-187
    • /
    • 2022
  • Purpose: The purpose of this study was to determine the asymmetrical difference between the use of leg muscles on the surgical and non-surgical sides during initial lower extremity ergometer exercise after unilateral knee arthroplasty. Methods: Twelve elderly patients diagnosed with degenerative arthritis of the knee and who underwent unilateral arthroplasty were included in this study. The leg length of each subject was taken into account when setting the application distance of the lower extremity ergometer. The same pedal resistance, strength, and speed were used for all the subjects. The total angle of use of the ergometer (360°) was analyzed by dividing it into an extension section and a flexion section. Using a surface electromyography system, the activities of the muscles of the surgical and non-surgical sides were converted into maximal voluntary isometric contraction (MVIC) and analyzed using the paired t-test. Results: When the activities of the muscles on the surgical and non-surgical sides were compared, it was found that the rectus femoris and biceps femoris had significant differences in the flexion and extension sections (p < .05), and that the tibialis anterior significantly differed in the flexion section (p < .05). There was no significant difference in the extension section of the tibialis anterior muscle, or in the flexion and extension sections of the gastrocnemius (p >.05). Conclusion: The results of this study confirm that the rectus femoris, tibialis anterior, biceps femoris, and gastrocnemius on the surgical side act in an opposite manner to those on the non-surgical side during pedaling in the same section.