• Title/Summary/Keyword: Pedal Force

Search Result 32, Processing Time 0.024 seconds

Interfacial Energetics of All Oxide Transparent Photodiodes

  • Yadav, Pankaj;Kim, Hong-sik;Patel, Malkeshkumar;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.390.1-390.1
    • /
    • 2016
  • The present work explains the interfacial energetics of all oxide transparent photodiodes. The optical, structural and morphological of copper oxides were systematically analyse by UV-Visible spectrometer, X-Ray diffraction, Raman spectroscopy, Scanning electron microscopy (SEM) and Atomic force microscopy measurements (AFM). The UV-Visible result exhibits optical bandgap of Cu2O and CuO as 2.2 and 2.05 eV respectively. SEM and AFM result shows a uniform grain size distribution in Cu2O and CuO thin films with the average grain size of 45 and 40 nm respectively. The results of Current-Voltage and Kelvin probe force microscope characteristics describe the electrical responses of the Cu2O/ZnO and CuO/ZnO heterojunctions photodiodes. The obtained electrical response depicts the approximately same knee voltages with a measurable difference in the absolute value of net terminal current. More over the present study realizes the all oxide transparent photodiode with zero bias photocurrent. The presented results lay the template for fabricating and analysing the self-bias all oxide transparent photodetector.

  • PDF

Effect of Saddle to Pedal Length in Kayak Ergometer on Rowing Motion and EMG Activation in Elite Kayak Players (엘리트 카약 선수들의 에르고미터를 이용한 로잉 동작 시 안장과 페달의 거리가 로잉 패턴 및 근 활성도에 미치는 영향)

  • Ryue, Jae-Jin;Nam, Ki-Jung;Lee, Chong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.65-73
    • /
    • 2012
  • The purpose of this study was to identify the saddle to pedal length contributing to successful performance in kayak using a kayak ergometer. Ten male elite kayak players participated in this study. players were tested on the kayak ergometer which was varied saddle to pedal length by the knee flexion angle(90deg; 120deg; 150deg) to measure stroke frequency, paddling amplitude, joint angle, RoM and angular velocity, foot pressure and force, iEMG using the 3D motion system, foot pressure system and EMG wireless system. At a results, rowing at 120deg on knee flexion angle showed higher stroke frequency and paddling amplitude than other knee flexion angles. RoM at upper extremity showed not significant difference between knee flexion angles. But there were significant differences in thorax and pelvis rotation RoM, knee flexion-extension RoM in each condition. In addition, foot pressure, force and iEMG were significantly different in knee flexion angles. Study showed that changed of saddle to pedal length affected rowing performance kinds of stroke frequency, paddling amplitude. The most important thing, increased range of motion in pelvic and thorax has occurred by force that generated foot-bar to seat. Not only that, but it seems to be attributed to a technical adaptation developed to maximum rowing performance.

Automotive Manual Transmission Clutch System Modeling for Foot Effort Hysteresis Characteristics Prediction (자동차 수동 변속기 클러치 시스템의 답력 이력 특성 예측 모델)

  • Lee, Byoung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.164-170
    • /
    • 2008
  • A typical clutch system for automotive manual transmissions transfers hydraulic pressure generated by driver's pedal manipulation to the clutch diaphragm spring. The foot effort history during the period of push is different than the period of the clutch pedal's return. The effort or load difference is called clutch foot effort hysteresis. It is known that the hysteresis is caused by friction. The frictional force and moment are produced between various component contact points such as between the rubber seal and the inner wall inside the hydraulic cylinder and between the diaphragm spring and the pressure plate, etc. Understanding the clutch pedal foot effort hysteresis is essential for a clutch release system design and analysis. The dynamic model for a clutch release system is developed for the foot effort hysteresis prediction and a simulation analysis is performed to propose a tool for analysing a clutch system.

A Convergence Study through Structural Analysis for Lightweight of Brake Pedal for Racing Spec Installed with Balance Bar (밸런스 바가 장착된 레이싱 스펙 브레이크 페달의 경량화 구조 해석을 통한 융합연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.123-128
    • /
    • 2019
  • The structural analysis for light weight on the brake pedal of the racing spec installed with the balance bars of the four models were performed in this study. By utilizing two materials of steels and aluminum alloys, four shapes were analyzed. It is generally assumed that the magnitude of force a person may incur when riding in a car is 1000 N. The fixed points are designated as the parts at which the bolts and pedals are fixed and the mounting part of the balance bar applied by the stress transmitted through the rod when the pressure of the master cylinder rises and the operation stops. Through this analysis study, it is thought that the vulnerability of each brake pedal model can be investigated and the transmission efficiency of the brake pedal can be increased by light weight. As the design data with the durability of brake pedal obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the part of car at real life.

Usability of Cockpit Design and Musculoskeletal Discomfort in Korean Air Force Fighter Pilots (한국 공군 주력 전투기 조종실의 사용성과 조종사의 근 골격계 불편도에 대한 연구)

  • Byun, Seong-Nam;Lee, Dong-Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.1
    • /
    • pp.100-110
    • /
    • 1999
  • The objectives of this study are twofold: (1) to evaluate the cockpit of three Korean air force fighters such as F-4, F-5, and F-16 in an ergonomic perspective and (2) to measure the musculoskeletal discomfort of the fighter pilots. For the study, 369 air force pilots from 7 squadrons were surveyed. The study shows that the cockpit design of F-16 is superior to the others. However, F-4 is the worst among them. Statistical analyses reveal that the seat in the cockpit raised the most complaints, regardless of types of fighter planes. The main problems with the seat included inappropriate designs of the backrest angle, seat cushioning, and parachute harness. Also frequently cited are various control switches, control stick, rudder pedal, and the throttle. That these items lack human integration is found in remote positions and improper dimensions. The implications of these findings are discussed. The self-reported musculoskeletal complaints show that the main discomfort is on the back and neck. Also, the buttocks, shoulders, and the legs/knees are common sites of discomfort. A stepwise regression analysis shows that the back discomfort, is mainly caused by the use of the seat, rudder pedal, control stick, and switches. A Spearman rank correlation coefficient test also reveals that job dissatisfaction of the pilots is related to the complaints with the cockpit and musculoskeletal discomfort. These findings suggest that more comprehensive studies for cockpit design in the aspects of functional anthropometry of Korean pilots are needed to reduce the musculoskeletal discomfort.

  • PDF

Estimation of Loads applied to a Rider using a static Biomechanical Model. (자전거를 탈때의 정적 생체역학 모형에 관한 연구)

  • 반영환;장필식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.197-204
    • /
    • 1997
  • Torques on each joint, the compression on L5/S1 disc, the force on hand of a rider are estimated using a static biomechnic model. Forces that the rider applies to the pedals, saddle and handle during starting and speeding are estimated using static mechanics. Physical stress is considered accroding to handle height and horizontal distance between handle and pedal. When handle height is higher in normal speeding, the force on handle and sum of torques on each joint decreases.

  • PDF

Design Optimization of Tractor Clutch Mechanism Systems by Using Feasible Direction Method (유용방향법 최적화 알고리즘을 이용한 트랙터 클러치 최적설계)

  • Cho, Hee-Keun;Kim, Kyung-Won;Lee, In-Bok
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.287-293
    • /
    • 2010
  • In order to optimize an agricultural tractor clutch mechanism system, its structural static and kinematic mechanism were analyzed. The operating force of the mechanical tractor clutch system is currently not appropriate to drive comfortably. So it is needed to reduce the clutch operating force by applying advanced engineering design techniques. In the present study, an optimization technology is applied to the design of tractor clutch systems to reduce the operating force. As a result of the optimization using 2 link-angles and 1 link-length which are the main design variables of the clutch linkage system, the maximum pushing force of the maximum clutch pedal was found 182.8N, 14% decreased compared to the existing clutch system. The effectiveness of the optimum design is certified by menas of an experiment.

Development of a Procedure to Calculate Principal Internal Forces for the Strength Design of a Forklift Truck Brake System (지게차량 제동장치 시스템 강도설계를 위한 주요 내력 계산 프로시져 개발)

  • 유홍희;박근배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.27-36
    • /
    • 1997
  • For the strength design of the brake system of a forklift truck, a procedure to calculate the internal forces acting on the system is presented in this paper. Vehicle dynamics, brake system kinematics, and internal force equilibrium analysis are integrated into the procedure. Design parameters such as stopping distance, maximum decceleration, and maximum torque generated by pedal force are considered in the vehicle dynamics, and geometric parameters of the brake system are considered in the brake system kinematics. With the two analysis results obtained, the internal forces acting in the brake system are finally calculated in the procedure.

  • PDF

A Study on an Independent 6WD/6WS of Electric Vehicle using Optimum Tire Force Distribution (최적 타이어 힘 분배 방법을 통한 전기차의 독립 6WD/6WS에 관한 연구)

  • Kim, Dong-Hyung;Kim, Chang-Jun;Kim, Young-Ryul;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.632-638
    • /
    • 2010
  • This paper presents an optimum tire force distribution method for 6WD/6WS(6-Wheel-Drive and 6-Wheel-Steering) electric vehicles. Using an independent steering and driving system, the performance of 6WD/6WS vehicles can be improved, as, for example, with respect to their maneuverability under low speed and their stability at high speed. Therefore, there should be a control strategy for finding the optimum tire forces that satisfy the driver's command and minimize energy consumption. From the driver's commands (steering angle and accelerator/brake pedal stroke), the desired yaw moment, the desired lateral force, and the desired longitudinal force were obtained. These three values were distributed to each wheel as the torque and the steering angle, based on the optimum tire force distribution method. The optimum tire force distribution method finds the longitudinal/lateral tire forces of each wheel that minimize the cost function, which is the sum of the normalized tire forces. Next, the longitudinal/lateral tire forces of each wheel are converted into the reference torque inputs and the steering wheel angle inputs. The proposed method was tested through a simulation, and its effectiveness was verified.

A Study on the Output Characteristic of Vacuum Booster (진공배력장치 출력특성에 대한 연구)

  • Lee, C.T.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.110-116
    • /
    • 2009
  • In the present study, we proposed a simulation model of vacuum booster with AMESIM software to predict the output characteristic. And we performed the sensitivity analysis of output characteristic with main design parameters, such as diaphragm diameter. All of these parameters are main design parameters in the procedure of vacuum booster design. The simulation results of this paper offer qualitative information of vacuum booster output. Therefore, the simulation results of this paper will be used effectively for the design procedure of vacuum booster in the industrial field.

  • PDF