• Title/Summary/Keyword: Pectobacterium carotovorum subsp. carotovorum LY34

검색결과 3건 처리시간 0.019초

Pectobacterium carotovorum subsp. carotovorum LY34에서 Lsoamylase 유전자 클로닝 및 효소 활성의 필수 잔기 확인 (Cloning of Isoamylase Gene of Pectobacterium carotovorum subsp. carotovorum LY34 and Identification of Essential Residues of Enzyme)

  • 조계만;김은주;레누카라디아마스;샤모허마드아스라풀;홍선주;김종옥;신기재;이영한;김훈;윤한대
    • 생명과학회지
    • /
    • 제17권9호통권89호
    • /
    • pp.1182-1190
    • /
    • 2007
  • 연부균인 Pectobacterium carotovorum subsp. carotovorum LY34로부터 이소아밀라제 유전자 (glgX)를 클로닝한 후 대장균 숙주에서 발현시켰다. 이 효소는 ${\alpha}-1$,6-글루코시드 결합을 가수분해하였으나 ${\alpha}-1$,4-글루코시드 결합은 가수분해 하지 못하였다. 유전자는 658개의 아미노산을 암호화하는 1,977개의 DNA 염기서열로 이루어져 있었고 이 유전자에 의해 암호화되는 아미노산 서열을 다른 아밀라제 효소들과 비교한 결과 이소아밀라제 유전자와 유사하였으며 4개의 보존 지역을 확인하였다. SDS-PAGE에 의해 확인된 단백질의 크기는 약 74 kDa 이었다. 효소 활성은 pH 7.0, $40^{\circ}C$에서 가장 높은 활성을 나타났으며 $Ca^{2+}$ 첨가로 활성이 증가되었다. 이 효소의 보존되어 있는 아미노산 중에 글루탐산 370번, 아스파르트산 335번 및 442번 잔기를 알라닌으로 치환시킨 결과 활성이 약해졌다. 이 결과로부터 이들 잔기들이 효소활성에 중요한 역할을 하는 것으로 추정된다.

Cloning of celC, Third Cellulase Gene, from Pectobacterium carotovorum subsp. carotovorum LY34 and its Comparison to Those of Pectobacterium sp.

  • LIM WOO JIN;RYU SUNG KEE;PARK SANG RYEOL;KIM MIN KEUN;AN CHANG LONG;HONG SU YOUNG;SHIN EUN CHULE;LEE JONG YEOUL;LIM YONG PYO;YUN HAN DAE
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.302-309
    • /
    • 2005
  • Phytopathogenic Pectobacterium carotovorum subsp. carotovorum (Pcc) LY34 secretes multiple isozymes of the plant cell wall degrading enzyme endoglucanases. We have cloned a third cel gene encoding CMCase from Pcc LY34. The structural organization of the celC gene (AY188753) consisted of an open reading frame (ORP) of 1,116 bp encoding 371 amino acid residues with a signal peptide of 22 amino acids within the NH$_2$-terminal region of pre-CelC. The predicted amino acid sequence of CelC was similar to that of Peetobaeterium ehrysanthemi Cel8Y (AF282321). The CelC has the conserved region of the glycoside hydrolase family 8. The apparent molecular mass of CelC was calculated to be 39 kDa by CMC-SDS-PAGE. The cellulase­minus mutant of Pee LY34 was as virulent as the wild-type in pathogenicity tests on tubers of potato. The results suggest that the CelC of Pce LY34 is a minor factor for the pathogenesis of soft-rot.

Differential Resistance of Radish Cultivars against Bacterial Soft Rot Caused by Pectobacterium carotovorum subsp. carotovorum

  • Soo Min Lee;Jin Ju Lee;Hun Kim;Gyung Ja Choi
    • The Plant Pathology Journal
    • /
    • 제40권2호
    • /
    • pp.151-159
    • /
    • 2024
  • Bacterial soft rot caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) is one of the most severe diseases in radish cultivation. To control this plant disease, the most effective method has been known to cultivate resistant cultivars. Previously, we developed an efficient bioassay method for investigating resistance levels with 21 resistant and moderately resistant cultivars of radish against a strain Pcc KACC 10421. In this study, our research expanded to investigate the resistance of radish cultivars against six Pcc strains, KACC 10225, KACC 10421, ATCC 12312, ATCC 15713, LY34, and ECC 301365. To this end, the virulence of the six Pcc strains was determined based on the development of bacterial soft rot in seedlings of four susceptible radish cultivars. The results showed that the Pcc strains exhibited different virulence in the susceptible cultivars. To explore the race differentiation of Pcc strains corresponding to the resistance in radish cultivars, we investigated the occurrence of bacterial soft rot caused by the six Pcc strains on the 21 resistant and moderate resistant cultivars. Our results showed that the average values of the area under the disease progress curve were positively correlated with the virulence of the strains and the number of resistant cultivars decreased as the virulence of Pcc strains increased. Taken together, our results suggest that the resistance to Pcc of the radish cultivars commercialized in Korea is more likely affected by the virulence of Pcc strains rather than by race differentiation of Pcc.