• Title/Summary/Keyword: Pebble-bed

Search Result 53, Processing Time 0.023 seconds

Effect of packing structure on anisotropic effective thermal conductivity of thin ceramic pebble bed

  • Wang, Shuang;Wang, Shuai;Wu, Bowen;Lu, Yuelin;Zhang, Kefan;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2174-2183
    • /
    • 2021
  • Helium cooled solid breeder blanket as an important blanket candidate of the Tokamak fusion reactor uses ceramic pebble bed for tritium breeding. Considering the poor effective thermal conductivity of the ceramic breeder pebble bed, thin structure of tritium breeder pebble bed is usually adopted in the blanket design. The container wall has a great influence on the thin pebble bed packing structure, especially for the assembly of mono-sized particles, and thin pebble bed will appear anisotropic effective thermal conductivity phenomenon. In this paper, thin ceramic pebble beds composed of 1 mm diameter Li4SiO4 particles are generated by the EDEM 2.7. The effective thermal conductivity of different thickness pebble beds in the three-dimensional directions are analyzed by three-dimensional thermal network method. It is observed that thin Li4SiO4 pebble bed showing anisotropic effective thermal conductivity under the practical design size. Normally, the effective thermal conductivity along the bed vertical direction is higher than the horizontal direction due to the gravity effect. As the thickness increases from 10 mm to 40 mm, the effective thermal conductivity of the pebble bed gradually increases.

Effects of 3D contraction on pebble flow uniformity and stagnation in pebble beds

  • Wu, Mengqi;Gui, Nan;Yang, Xingtuan;Tu, Jiyuan;Jiang, Shengyao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1416-1428
    • /
    • 2021
  • Pebble flow characteristics can be significantly affected by the configuration of pebble bed, especially for HTGR pebble beds. How to achieve a desired uniform flow pattern without stagnation is the top priority for reactor design. Pebbles flows inside some specially designed pebble bed with arc-shaped contraction configurations at the bottom, including both concave-inward and convex-outward shapes are explored based on discrete element method. Flow characteristics including pebble retention, residence-time frequency density, flow uniformity as well as axial velocity are investigated. The results show that the traditionally designed pebble bed with cone-shape bottom is not the most preferred structure with respect to flow pattern for reactor design. By improving the contraction configuration, the flow performance can be significantly enhanced. The flow in the convex-shape configuration featured by uniformity, consistency and less stagnation, is much more desirable for pebble bed design. In contrast, when the shape is from convex-forward to concave-inward, the flow shows more nonuniformity and stagnation in the corner although the average cross-section axial velocity is the largest due to the dominant middle pebbles.

Homogenized cross-section generation for pebble-bed type high-temperature gas-cooled reactor using NECP-MCX

  • Shuai Qin;Yunzhao Li;Qingming He;Liangzhi Cao;Yongping Wang;Yuxuan Wu;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3450-3463
    • /
    • 2023
  • In the two-step analysis of Pebble-Bed type High-Temperature Gas-Cooled Reactor (PB-HTGR), the lattice physics calculation for the generation of homogenized cross-sections is based on the fuel pebble. However, the randomly-dispersed fuel particles in the fuel pebble introduce double heterogeneity and randomness. Compared to the deterministic method, the Monte Carlo method which is flexible in geometry modeling provides a high-fidelity treatment. Therefore, the Monte Carlo code NECP-MCX is extended in this study to perform the lattice physics calculation of the PB-HTGR. Firstly, the capability for the simulation of randomly-dispersed media, using the explicit modeling approach, is developed in NECP-MCX. Secondly, the capability for the generation of the homogenized cross-section is also developed in NECP-MCX. Finally, simplified PB-HTGR problems are calculated by a two-step neutronics analysis tool based on Monte Carlo homogenization. For the pebble beds mixed by fuel pebble and graphite pebble, the bias is less than 100 pcm when compared to the high-fidelity model, and the bias is increased to 269 pcm for pebble bed mixed by depleted fuel pebble. Numerical results show that the Monte Carlo lattice physics calculation for the two-step analysis of PB-HTGR is feasible.

MIT PEBBLE BED REACTOR PROJECT

  • Kadak, Andrew C.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.95-102
    • /
    • 2007
  • The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis.

Characteristics of Air-blown Gasification In a Pebble bed Gasifier (고온공기를 이용한 고형연료의 가스화 운전 특성)

  • Choi, Young-Chan;Kim, Jae-Ho;Hong, Jae-Chang;Kim, Young-Ku;Lee, See-Hoon;Lee, Jae-Goo
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.238-243
    • /
    • 2004
  • High temperature air blown gasification is new concept to utilize the waste heat from gasifier that is called the multi-staged enthalpy extraction technology. This process was developed to solve the economic problem due to air separation cost for the oxygen-blown as a gasifiying agent. In this study, we have performed the construction of pebble bed gasifier and operated it by controlling the pebble size and bed height. As a result, we can produce the syngas with the calorific value of 700kcal/$Nm^3$ at the condition of air temperature 650$^{\circ}C$.

  • PDF

Measurement of Flow Field in the Pebble Bed Type High Temperature Gas-cooled Reactor (페블 베드 타입 고온 가스 냉각 원자로 내부 유동장 측정)

  • Lee, Sa-Ya;Lee, Jae-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2088-2093
    • /
    • 2008
  • In this study, flow field measurement of the Pebble Bed Reactor(PBR) for the High Temperature Gas-cooled Reactor(HTGR) was performed. Large number of pebbles in the core of PBR provides complicated flow channel. Due to the complicated geometries, numerical analysis has been intensively made rather than experimental observation. However, the justification of computational simulation by the experimental study is crucial to develop solid analysis of design method. In the present study, a wind tunnel installed with pebbles stacked was constructed and equipped with the Particle Image Velocimetry(PIV). We designed the system scaled up to realize the room temperature condition according to the similarity. The PIV observation gave us stagnation points, low speed region so that the suspected high temperature region can be identified. With the further supplementary experimental works, the present system may produce valuable data to justify the Computational Fluid Dynamics(CFD) simulation method.

  • PDF

Studies on a Effective Scheme to Obtain High Temperature Working Plasma for MHD Power Generation (MHD발전용 작동 플라즈마를 고온가열하기 위한 효율적 방안에 관한 연구)

  • 김윤식;노창주;김영길;공영경;최춘성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.153-161
    • /
    • 1993
  • Heat transfer processes in the combustion chamber of a pebble bed regenerative heat exchanger for MHD power generation has been analyzed numerically for heating, evacuation argon heating periods individually. The calculated result well explain the measured temperature change at the top of the pebble bed. The analytical result point out that the length of evacution period and the geometry optimization both for the combustion chamber and the heat storage bed are very important factors for the improvement of thermal performance in MHD power generation.

Pressure and Flow Distribution in the Inlet Plenum of a Pebble Bed Modular Reactor (PBMR)

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.244-249
    • /
    • 2005
  • Flow distribution and pressure drop analysis for an inlet plenum of a Pebble Bed Modular Reactor (PBMR) have been performed using Computational Fluid Dynamics. Three-dimensional Navier-Stokes equations have been solved in conjunction with $k-{\epsilon}$ model as a turbulence closure. Non-uniformity in flow distribution is assessed for the reference case and parametric studies have been performed for rising channels diameter, Reynolds number and angle between the inlet ports. Also, two different shapes of the inlet plenum namely, rectangular shape and oval shape, have been analysed. The relative flow mal-distribution parameter shows that the flow distribution in the rising channels for the reference case is strongly non-uniform. As the rising channels diameter decreases, the uniformity in the flow distribution as well as the pressure drop inside the inlet plenum increases. Reynolds number is found to have no effect on the flow distribution in the rising channels for both the shapes of the inlet plenum. The increase in angle between the inlet ports makes the flow distribution in the rising channels more uniform.

  • PDF