• Title/Summary/Keyword: Peak to Peak Analysis

Search Result 4,798, Processing Time 0.041 seconds

Discrimination of Domestic Rice Cultivars by Capillary Electrophoresis (Capillary Electrophoresis를 이용한 국내산 쌀의 품종 판별)

  • Rhyu, Mee-Ra;Kim, Eun-Young;Ahn, Mee-Ok;Kim, Sang-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1252-1258
    • /
    • 1998
  • Capillary electrophoresis (CE) with rice proteins was used to discriminate 10 domestic rice cultivars in less than 25 min. Most cultivars were differentiated quickly and easily using P-ACN buffer system. CE of rice prolamins allowed classifying ten varieties of Korean rice into three groups. Peak h was characteristic peak for Dongjinbyeo, Gaehwabyeo and Yongnambyeo which were classified into the group of Dongjinbyeo. Chuchungbyeo, Odaebyeo, Mangeumbyeo and Bonggwangbyeo easily differentiated from the group of Dongjinbyeo by the absence of peak h which were classified into the group of Chuchungbyeo. Peak g typical for Illpumbyeo, Hwaseungbyeo and Hwayoungbyeo accounted for 70% of total peak area. They belong to the group of Illpumbyeo. Some cultivars showed specific peak patterns among ten cultivars, Illpumbyeo was differentiated from others by several peaks between peak c and peak f, and the peak d was apparently detected in Odaebyeo not in others. Other minor differences were also found within each group. The result of the study showed that CE has potential for discrimination of rice cultivars. It also possesses the inherent advantages such as low mass requirements, fast seperations, and quantitative analysis through on-capillary UV detection.

  • PDF

Numerical Analysis of Through Transmission Pulsed Eddy Current Testing and Effects of Pulse Width Variation

  • Shin, Young-Kil;Choi, Dong-Myung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.255-261
    • /
    • 2007
  • By using numerical analysis methods, through transmission type pulsed eddy current (PEC) testing is modeled and PEC signal responses due to varying material conductivity, permeability, thickness, lift-off and pulse width are investigated. Results show that the peak amplitude of PEC signal gets reduced and the time to reach the peak amplitude is increased as the material conductivity, permeability, and specimen thickness increase. Also, they indicate that the pulse width needs to be shorter when evaluating the material conductivity and the plate thickness using the peak amplitude, and when the pulse width is long, the peak time is found to be more useful. Other results related to lift-off variation are reported as well.

Pattern Analysis of Maximum Power Point by means of Solar Cell Module Array Simulation (태양전지 모듈 어레이 시뮬레이션을 이용한 최대전력점 패턴분석)

  • Jeong, Ji-Won;Park, In-Gyu;Hwang, Kuk-Yeon;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.72-79
    • /
    • 2013
  • In the paper, a pattern analysis to decide whether the 1st local peak power point near open circuit voltage is the global peak power point or not, in case that the voltage and current at the 1st local peak power point are in a specific range, for Maximum Power Point Tracking on the photo voltaic power conversion system. When a solar cell panel array is shaded partially, multi-local peak power points can occur. That makes it hard to search the global peak power point. Through Tableau analysis using by piecewise linear solar cell model, V-I characteristic of a solar cell panel array circuit when partial shading problem happens, is simulated. The global peak power and the local peak power points is confirmed by simulations. Voltage and current values and patterns of V-I characteristic are analyzed. The generating efficiency of the solar cell panel array is improved, when the solar cell panel array circuit is operated at the power point estimated by setting up specific range.

Peak Factors for Bridges Subjected to Asynchronous Multiple Earthquake Support Excitations

  • Yoon, Chong-Yul;Park, Joon-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • Accurate response analysis of long span bridges subjected to seismic excitation is important for earthquake hazard mitigation. In this paper, the performance of a typical four span continuous reinforced concrete bridge model subjected to asynchronous multiple seismic excitations at the supports is investigated in both the time and frequency domains and the results are compared with that from a relevant uniform support excitations. In the time domain analysis, a linear modal superposition approach is used to compute the peak response values. In the frequency domain analysis, linear random vibration theory is used to determine the root mean square response values where the cross correlation effects between the modal and the support excitations on the seismic response of the bridge model are included. From the two sets of results, a practical range of peak factors which are defined to be the ratio of peak and the root mean square responses are suggested for displacements and forces in members. With reliable practical values of peak factors, the frequency domain analysis is preferred for the performance based design of bridges because of the computational advantage and the generality of the results as the time domain analysis only yields results for the specific excitation input.

Analysis of the dynamic confining effect of CRAC short column under monotonic loadings

  • Wang, Changqing;Xiao, Jianzhuang
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.351-363
    • /
    • 2020
  • Based on the dynamic tests of recycled aggregate concrete (RAC) short columns confined by the hoop reinforcement, the dynamic failure mechanism and the mechanical parameters related to the constitutive relation of confined recycled aggregate concrete (CRAC) were investigated thoroughly. The fracturing sections were relatively flat and smooth at higher strain rates rather than those at a quasi-static strain rate. With the increasing stirrup volume ratio, the crack mode is transited from splitting crack to slipping crack constrained with large transverse confinement. The compressive peak stress, peak strain, and ultimate strain increase with the increase of stirrup volume ratio, as well as the increasing strain rate. The dynamic confining increase factors of the compressive peak stress, peak strain, and ultimate strain increase by about 33%, 39%, and 103% when the volume ratio of hoop reinforcement is increased from 0 to 2%, but decrease by about 3.7%, 4.2%, and 9.1% when the stirrup spacing is increased from 20mm to 60mm, respectively. This sentence is rephrased as follows: When the stirrup volume ratios are up to 0.675%, and 2%, the contributions of the hoop confinement effect to the dynamic confining increase factors of the compressive peak strain and the compressive peak stress are greater than those of the strain rate effect, respectively. The dynamic confining increase factor (DCIF) models of the compressive peak stress, peak strain, and ultimate strain of CRAC are proposed in the paper. Through the confinement of the hoop reinforcement, the ductility of RAC, which is generally slightly lower than that of NAC, is significantly improved.

Biomechanical Analysis of Injury Factor According to the Change of Direction After Single-leg Landing

  • Kim, Jong-Bin;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.433-441
    • /
    • 2016
  • Objective: The purpose of this study was to understand the injury mechanism and to provide quantitative data to use in prevention or posture correction training by conducting kinematic and kinetic analyses of risk factors of lower extremity joint injury depending on the change of direction at different angles after a landing motion. Method: This study included 11 men in their twenties (age: $24.6{\pm}1.7years$, height: $176.6{\pm}4.4cm$, weight: $71.3{\pm}8.0kg$) who were right-leg dominant. By using seven infrared cameras (Oqus 300, Qualisys, Sweden), one force platform (AMTI, USA), and an accelerometer (Noraxon, USA), single-leg drop landing was performed at a height of 30 cm. The joint range of motion (ROM) of the lower extremity, peak joint moment, peak joint power, peak vertical ground reaction force (GRF), and peak vertical acceleration were measured. For statistical analysis, one-way repeated-measures analysis of variance was conducted at a significance level of ${\alpha}$ <.05. Results: Ankle and knee joint ROM in the sagittal plane significantly differed, respectively (F = 3.145, p = .024; F = 14.183, p = .000), depending on the change of direction. However, no significant differences were observed in the ROM of ankle and knee joint in the transverse plane. Significant differences in peak joint moment were also observed but no statistically significant differences were found in negative joint power between the conditions. Peak vertical GRF was high in landing (LAD) and after landing, left $45^{\circ}$ cutting (LLC), with a significant difference (F = 9.363, p = .000). The peak vertical acceleration was relatively high in LAD and LLC compared with other conditions, but the difference was not significant. Conclusion: We conclude that moving in the left direction may expose athletes to greater injury risk in terms of joint kinetics than moving in the right direction. However, further investigation of joint injury mechanisms in sports would be required to confirm these findings.

Measurement and analysis the peak recoil force of pistol (권총의 최대반동력 측정 및 해석)

  • Um, Hyuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1033-1036
    • /
    • 1996
  • In Pistol, the peak recoil force affects the reliability of the frame and the accuracy of target shooting. To attenuate the peak recoil force of pistol, we develop measuring test bed, which consists of force sensors, linear sensor and a high speed video camera, execute tests with several Pistol models and compare the results measured.

  • PDF

Long Term Average Spectral Analysis for Acoustical Discrimination of Korean Nasal Consonants (한국어 비음의 음향학적 구분을 위한 장구간 스펙트럼(LTAS) 분석)

  • Choi, Soon-Ai;Seong, Cheol-Jae
    • MALSORI
    • /
    • no.60
    • /
    • pp.67-84
    • /
    • 2006
  • The purpose of this study is to find some acoustic parameters on frequency domain to distinguish the Korean nasals, $/m,\;n,\;{\eta}/$ from each other. The new parameters are devised on the basis of LTAS (Long Term Average Spectrum). The maximum peak amplitude and the relevant formant frequency are measured in low and high frequency range, respectively. The frequency of spectral valley and its energy level are also obtained in the specific frequency range of the spectrum. Spectral slope, total energy value in specific frequency range, statistical distribution of spectral energy like centroid, skewness, and kurtosis are suggested as new parameters as well. The parameters that show statistically significant differences across nasals are summerized as follows. 1) in syllable initial positions: the total energy value from 1,500 to 2,200 Hz(zeroENG); 2) in syllable final positions: the peak amplitude of the first formant(peak1_a), the formant frequency with maximum peak amplitude from 4,000 to 8,000 Hz(peak2_f), the maximum peak amplitude of the formant frequency from 4,000 to 8,000 Hz(peak2_a), and the total energy value from 1,500 to 2,200 Hz(zeroENG).

  • PDF

Speech/Music Discrimination Using Spectral Peak Track Analysis (스펙트럴 피크 트랙 분석을 이용한 음성/음악 분류)

  • Keum, Ji-Soo;Lee, Hyon-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.243-244
    • /
    • 2006
  • In this study, we propose a speech/music discrimination method using spectral peak track analysis. The proposed method uses the spectral peak track's duration at the same frequency channel for feature parameter. And use the duration threshold to discriminate the speech/music. Experiment result, correct discrimination ratio varies according to threshold, but achieved a performance comparable to another method and has a computational efficient for discrimination.

  • PDF

도시 소하천 개발에 따른 유출 변화량의 모의기법에 관한 연구

  • 김성원;조정석
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.451-460
    • /
    • 1998
  • The objectives of this study Is to evaluate the total runoff yield, peak flow and peak flow travel time depending on the urbanization, return period and rainfall patterns at the downstream of Manchon urban watershed in TaeGu City. SWM(Storm Water Management Model) is used for runog analysis based on 5 different steps of urbanization and 4 different types of Hufrs quartile according to 8 return periods. It is analyzed that the order of total runoff yield according to raiun patterns is Huffs 4, Huffs 2. Huffs 3 and Huffs 1 quartile, that of peak flow magnitude is Huffs 2, Huffs 1, Huffs 4 and Huffs 3 quartile at present development ratio. under the 60, 70, 80 and 90ft of urbanization to the 50% of urbanization by means of the rainfall patterns, the mean Increasing ratio of total runoff yield for each case is 4.55, 11.43, 16.07 and 20.02%, that of peak flow is 5.82, 13.61, 17.15 and 18.83%, the mean decreasing ratio of peak flow travel time Is 0.00, 2.44, 5.07 and 6.26%, the mean increasing ratio of runoff depth Is 4.51, 11.42, 16.02 and 20.05% respectively. the mean increasing ratio of total runoff yield by means of each and 19.71%. Therefore, as the result of this study. it can be used for principal data as to storm sewage treatment and flood damage protection planning in urban small watershed.

  • PDF