• Title/Summary/Keyword: Peak strength

Search Result 1,166, Processing Time 0.022 seconds

Small- and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.315-328
    • /
    • 2019
  • This paper presents an investigation on bearing capacity, load-settlement behavior and safety factor of rock-soil slopes reinforced using geogrid-box method (GBM). To this end, small-scale laboratory studies were carried out to study the load-settlement response of a circular footing resting on unreinforced and reinforced rock-soil slopes. Several parameters including unit weight of rock-soil materials (loose- and dense-packing modes), slope height, location of footing relative to the slope crest, and geogrid tensile strength were studied. A series of finite element analysis were conducted using ABAQUS software to predict the bearing capacity behavior of slopes. Limit equilibrium and finite element analysis were also performed using commercially available software SLIDE and ABAQUS, respectively to calculate the safety factor. It was found that stabilization of rock-soil slopes using GBM significantly improves the bearing capacity and settlement behavior of slopes. It was established that, the displacement contours in the dense-packing mode distribute in a broader and deeper area as compared with the loose-packing mode, which results in higher ultimate bearing load. Moreover, it was found that in the loose-packing mode an increase in the vertical pressure load is accompanied with an increase in the soil settlement, while in the dense-packing mode the load-settlement curves show a pronounced peak. Comparison of bearing capacity ratios for the dense- and loose-packing modes demonstrated that the maximum benefit of GBM is achieved for rock-soil slopes in loose-packing mode. It was also found that by increasing the slope height, both the initial stiffness and the bearing load decreases. The results indicated a significant increase in the ultimate bearing load as the distance of the footing to the slope crest increases. For all the cases, a good agreement between the laboratory and numerical results was observed.

Experimental Study on the Structural Capacity of the U-Flanged Truss Steel Beam (U-플랜지 트러스 보의 구조 내력에 관한 실험 연구)

  • Oh, Myoung Ho;Kim, Young Ho;Kang, Jae Yoon;Kim, Myeong Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.113-121
    • /
    • 2018
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars. Upper flange and lower plate are connected by the diagonal lattice bars welded on the upper and lower sides. In this study the structural experiments on the U-flanged truss beams with various shapes of upper flange were performed, and the flexural and shear capacities of U-flanged truss beam in the construction stage were evaluated. The principal test parameters were the shape of upper flange and the alignment space of diagonal lattice bars. In all the test specimens, the peak loads were determined by the buckling of lattice bar regardless of the upper flange shape. The test results have shown that the buckling of lattice bar is very important design factor and there is no need to reinforce the basic u-shaped upper flange. However, the early lattice buckling occurred in the truss beam with upper steel bars because of the insufficient strength and stiffness of upper chord, and the reinforcement in the upper chord is necessary. The formulae of Eurocode 3 (2005) have presented more exact evaluations of lattice buckling load than those of KBC 2016.

Evaluation of Microstructure and Mechanical Properties on Post-Weld Heat Treatment in the Heat Affected Zone of SA508 Gr.4N Ni-Mo-Cr Low Alloy Steel for Reactor Pressure Vessel (원자로압력용기용 SA508 Gr.4N Ni-Mo-Cr계 저합금강 용접열영향부의 용접후열처리에 따른 미세조직과 기계적 특성 평가)

  • Lee, Yoon-Sun;Kim, Min-Chul;Lee, Bong-Sang;Lee, Chang-Hee
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.139-146
    • /
    • 2009
  • The heat-affected zone (HAZ) of SA508 Gr.4N Ni-Mo-Cr low alloy steel, which has higher Ni and Cr contents than SA508 Gr.3 Mn-Mo-Ni low alloy steel, was investigated on the microstructure and mechanical properties. The HAZ was categorized into seven characteristic zones (CGCG, FGCG, ICCG, SCCG, FGFG, ICIC and SCSC-HAZ) according to the peak temperature from the thermal cycle experienced during multi-pass welding. Post Weld Heat Treatment (PWHT) was conducted in the temperature range of $550{\sim}610^{\circ}C$ for 30 hours to evaluate the effect of PWHT conditions on the microstructure and mechanical properties. Before PWHT, CGHAZ and FGFGHAZ showed high yield strength (YS) ranging from 1000 to 1250 MPa, while YS of SCSCHAZ decreased from 607 MPa (observed for base metal) to 501 MPa. The Charpy impact energies of sub-HAZs fell below 100J at $-29^{\circ}C$, except in the SCSCHAZ. By applying PWHT to sub-HAZ specimens, YS decreased as the PWHT temperature increased. In the case of CGHAZs and FGFGHAZ heat-treated at $610^{\circ}C$, YS dropped drastically to the range of 654~686 MPa. From the Charpy impact test, the upper-shelf energy (USE) increased to approximately 250J and Index temperature ($T_{68J}$) decreased below $-50^{\circ}C$. Specifically, in FGFG, ICIC and SCSC-HAZ, $T_{68J}$ was below -110, which was lower than the case of base metal.

Evaluation of Resistance Spot Weld Interfacial Fractures in Tensile-Shear Tests of TRIP 590 Steels (저항 점 용접된 TRIP590강의 계면파단특성에 관한 평가)

  • Park, Sang-Soon;Lee, Sang-Min;Cho, Yongjoon;Kang, Nam-Hyun;Yu, Ji-Hun;Kim, Young-Seok;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.672-682
    • /
    • 2008
  • The resistance spot welding of TRIP590 steels was investigated to enhance understanding of weld fracture during tensile-shear strength (TSS) test. The main failure modes for spot welds of TRIP590 steels were nugget pullout and interfacial fracture. The peak load to cause a weld interfacial failure was found to be related to fracture toughness of the weld and the weld diameter. Although interfacial fracture occurred in the samples, the load carrying capacity of the weld was high and not significantly affected by the fracture mode. Substantial part of the weld exhibits the characteristic dimple (or elongated dimple) fractures on interfacial fractured surface, in spite of the high hardness values associated with the martensite microstructures. The high load-bearing ability of the weld is directly associated with the area of ductile fracture occurred in weld. Therefore, the judgment of the quality of resistance spot welds in TRIP590 steels, the load carrying capacity of the weld should be considered as an important factor than fracture mode.

Effects of Robot-assisted Gait With Body Weight Support on Torque, Work, and Power of Quadriceps and Hamstring Muscles in Healthy Subjects

  • Hwang, Jihun;You, Sung (Joshua) Hyun;Choi, Woochol Joseph;Yi, Chung-hwi
    • Physical Therapy Korea
    • /
    • v.28 no.3
    • /
    • pp.215-226
    • /
    • 2021
  • Background: Robot-assisted gait training (RAGT) is an effective method for walking rehabilitation. Additionally, the body weight support (BWS) system reduces muscle fatigue while walking. However, no previous studies have investigated the effects of RAGT with BWS on isokinetic strength of quadriceps and hamstring muscles. Objects: The purpose of this study was to investigate the effects of torque, work, and power on the quadriceps and hamstring muscles during RAGT, using the BWS of three conditions in healthy subjects. The three different BWS conditions were BWS 50%, BWS 20%, and full weight bearing (FWB). Methods: Eleven healthy subjects (7 males and 4 females) participated in this study. The Walkbot_S was used to cause fatigue of the quadriceps and hamstring muscles and the Biodex Systems 4 Pro was used to measure the isokinetic torque, work, and power of them. After RAGT trials of each of the three conditions, the subjects performed isokinetic concentric knee flexion and extension, five at an angular velocity of 60°/s and fifteen at an angular velocity of 180°/s. One-way repeated analysis of variance was used to determine significant differences in all the variables. The least significant difference test was used for post-hoc analysis. Results: On both sides, there were significant differences in peak torque (PT) of knee extension and flexion between the three BWS conditions at an angular velocity of 60°/s and 180°/s conditions. A post-hoc comparison revealed that the PT in the BWS 50% was significantly greater than in the BWS 20% and the FWB and the PT in the BWS 20% was significantly greater than in the FWB. Conclusion: The results of this study suggest that the lower BWS during RAGT seems to lower the isokinetic torque, work, and power of the quadriceps and hamstring muscles because of the muscle fatigue increase.

Coupled irradiation-thermal-mechanical analysis of the solid-state core in a heat pipe cooled reactor

  • Ma, Yugao;Liu, Jiusong;Yu, Hongxing;Tian, Changqing;Huang, Shanfang;Deng, Jian;Chai, Xiaoming;Liu, Yu;He, Xiaoqiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2094-2106
    • /
    • 2022
  • The solid-state core of a heat pipe cooled reactor operates at high temperatures over 1000 K with thermal and irradiation-induced expansion during burnup. The expansion changes the gap thickness between the solid components and the material properties, and may even cause the gap closure, which then significantly influences the thermal and mechanical characteristics of the reactor core. This study developed an irradiation behavior model for HPRTRAN, a heat pipe reactor system analysis code, to introduce the irradiation effects such as swelling and creep. The megawatt heat pipe reactor MegaPower was chosen as an application case. The coupled irradiation-thermal-mechanical model was developed to simulate the irradiation effects on the heat transfer and stresses of the whole reactor core. The results show that the irradiation deformation effect is significant, with the irradiation-induced strains up to 2.82% for fuel and 0.30% for monolith at the end of the reactor lifetime. The peak temperatures during the lifetime are 1027:3 K for the fuel and 956:2 K for monolith. The gap closure enhances the heat transfer but caused high stresses exceeding the yield strength in the monolith.

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

Domestic Automotive Exterior Lamp-LEDs Demand and Forecasting using BASS Diffusion Model (BASS 확산 모형을 이용한 국내 자동차 외장 램프 LED 수요예측 분석)

  • Lee, Jae-Heun
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.349-371
    • /
    • 2022
  • Purpose: Compared to the rapid growth rate of the domestic automotive LED industry so far, the predictive analysis method for demand forecasting or market outlook was insufficient. Accordingly, product characteristics are analyzed through the life trend of LEDs for automotive exterior lamps and the relative strengths of p and q using the Bass model. Also, future demands are predicted. Methods: We used sales data of a leading company in domestic market of automotive LEDs. Considering the autocorrelation error term of this data, parameters m, p, and q were estimated through the modified estimation method of OLS and the NLS(Nonlinear Least Squares) method, and the optimal method was selected by comparing prediction error performance such as RMSE. Future annual demands and cumulative demands were predicted through the growth curve obtained from Bass-NLS model. In addition, various nonlinear growth curve models were applied to the data to compare the Bass-NLS model with potential market demand, and an optimal model was derived. Results: From the analysis, the parameter estimation results by Bass-NLS obtained m=1338.13, p=0.0026, q=0.3003. If the current trend continues, domestic automotive LED market is predicted to reach its maximum peak in 2021 and the maximum demand is $102.23M. Potential market demand was $1338.13M. In the nonlinear growth curve model analysis, the Gompertz model was selected as the optimal model, and the potential market size was $2864.018M. Conclusion: It is expected that the Bass-NLS method will be applied to LED sales data for automotive to find out the characteristics of the relative strength of q/p of products and to be used to predict current demand and future cumulative demand.

Dynamic failure features and brittleness evaluation of coal under different confining pressure

  • Liu, Xiaohui;Zheng, Yu;Hao, Qijun;Zhao, Rui;Xue, Yang;Zhang, Zhaopeng
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.401-411
    • /
    • 2022
  • To obtain the dynamic mechanical properties, fracture modes, energy and brittleness characteristics of Furong Baijiao coal rock, the dynamic impact compression tests under 0, 4, 8 and 12 MPa confining pressure were carried out using the split Hopkinson pressure bar. The results show that failure mode of coal rock in uniaxial state is axial splitting failure, while it is mainly compression-shear failure with tensile failure in triaxial state. With strain rate and confining pressure increasing, compressive strength and peak strain increase, average fragmentation increases and fractal dimension decreases. Based on energy dissipation theory, the dissipated energy density of coal rock increases gradually with growing confining pressure, but it has little correlation with strain rate. Considering progressive destruction process of coal rock, damage variable was defined as the ratio of dissipated energy density to total absorbed energy density. The maximum damage rate was obtained by deriving damage variable to reflect its maximum failure severity, then a brittleness index BD was established based on the maximum damage rate. BD value declined gradually as confining pressure and strain rate increase, indicating the decrease of brittleness and destruction degree. When confining pressure rises to 12 MPa, brittleness index and average fragmentation gradually stabilize, which shows confining pressure growing cannot cause continuous damage. Finally, integrating dynamic deformation and destruction process of coal rock and according to its final failure characteristics under different confining pressures, BD value is used to classify the brittleness into four grades.

Changes of Undrained Shear Behavior of Sand due to Cementation (고결(Cementation)에 따른 모래의 비배수 전단거동 변화)

  • Lee Woo-Jin;Lee Moon-Joo;Choi Sung-Kun;Hong Sung-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.85-94
    • /
    • 2006
  • Triaxial tests at isotropic confining pressure of 200 kPa were carried out to show the undrained shear behavior of artificially cemented sands, which were cemented by gypsum, and the influences of relative density and DOC (degree of cementation) were investigated from the results. The yield strength, the elastic secant modulus at yield point and the peak frictional angle of cemented sands increased abruptly compared to uncemented sands, and it was checked that cementation exerts more influence on the behavior of sand than the relative density. But after breakage of the cementation bonds, the relative density was more important factor on the behavior of sand than the cementation. Because the compressibility md the excess pore pressure of cemented sands were reduced due to the cementation bonds, the effective stress path of cemented sands was going toward to the total stress path of uncemented sands. The cementation of sand restricted the dialtion of sand at the pre-yield condition, but induced more dilation in the post-yield condition.