• 제목/요약/키워드: Peak power coefficient

검색결과 78건 처리시간 0.026초

대규모 와 모사에 의한 3차원 소형축류홴의 운전부하에 따른 난류유동 특성치 고찰 (An Investigation on Turbulent Flow Characteristics According to the Operating Loads of Three-Dimensional Small-Size Axial Fan by Large Eddy Simulation)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제20권1호
    • /
    • pp.50-56
    • /
    • 2016
  • This paper handled an investigation on the turbulent flow characteristics of three-dimensional small-size axial fan(SSAF) according to operating loads. Also, it was carried out by unsteady-state, incompressible and three-dimensional large eddy simulation(LES). The downstream flow type of SSAF is changed from axial flow to radial flow around the beginning of stall region at the aerodynamic performance curve. Axial mean velocity component largely grows around blade tip at the operating point of A to D, but transverse and vertical mean velocity components as well as Reynolds shear stresses highly develop around blade tip at the operating point of E to H. On the other hand, the peak value of turbulent kinetic energy developed around blade tip shows the highest at the operating point of E.

신경회로망과 회귀모형을 이용한 특수일 부하 처리 기법 (Special-Days Load Handling Method using Neural Networks and Regression Models)

  • 고희석;이세훈;이충식
    • 조명전기설비학회논문지
    • /
    • 제16권2호
    • /
    • pp.98-103
    • /
    • 2002
  • 전력수요를 예측할 경우 가장 중요한 문제 중의 하나가 특수일 부하의 처리문제이다. 따라서 본 연구에서 길고(구정, 추석) 짧은(식목일, 현충일 등) 특수일 피크 부하를 신경회로망과 회귀모형을 이용하여 예측하는 방법을 제시한다. 신경회로망 모형의 특수일 부하 처리는 패턴 변환비를 이용하며, 4차의 직교 다항 회귀모형은 과거의 10년 (1985∼1994)간의 특수일 피크부하 자료를 이용하여 길고 짧은 특수일 부하를 예측한다. 특수일 피크 부하를 예측한 결과, 신경회로망 모형의 주간 평균 예측 오차율과 직교 다항 회귀모형의 예측 오차율을 분석한 결과 1∼2[%]대로 두 모형 모두 양호한 결과를 얻었다. 또한 4차의 직교 다항 회귀 모형의 수정결정계수 및 F 검정을 분석한 결과 구성한 예측 모형의 타당성을 확인하였다. 두 모형의 특수일 부하를 예측한 결과를 비교해 보면 긴 특수일 부하를 예측할 때는 패턴 변환비를 이용한 신경회로망 모형이 보다 더 효과적이었고, 짧은 특수일 부하를 예측할 경우에는 두 방법 모두 유효하였다.

Evaluation of reactor pulse experiments

  • I. Svajger;D. Calic;A. Pungercic;A. Trkov;L. Snoj
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1165-1203
    • /
    • 2024
  • In the paper we validate theoretical models of the pulse against experimental data from the Jozef Stefan Institute TRIGA Mark II research reactor. Data from all pulse experiments since 1991 have been collected, analysed and are publicly available. This paper summarizes the validation study, which is focused on the comparison between experimental values, theoretical predictions (Fuchs-Hansen and Nordheim-Fuchs models) and calculation using computational program Improved Pulse Model. The results show that the theoretical models predicts higher maximum power but lower total released energy, full width at half maximum and the time when the maximum power is reached is shorter, compared to Improved Pulse Model. We evaluate the uncertainties in pulse physical parameters (maximum power, total released energy and full width at half maximum) due to uncertainties in reactor physical parameters (inserted reactivity, delayed neutron fraction, prompt neutron lifetime and effective temperature reactivity coefficient of fuel). It is found that taking into account overestimated correlation of reactor physical parameters does not significantly affect the estimated uncertainties of pulse physical parameters. The relative uncertainties of pulse physical parameters decrease with increasing inserted reactivity. If all reactor physical parameters feature an uncorrelated uncertainty of 10 % the estimated total uncertainty in peak pulse power at 3 $ inserted reactivity is 59 %, where significant contributions come from uncertainties in prompt neutron lifetime and effective temperature reactivity coefficient of fuel. In addition we analyse contribution of two physical mechanisms (Doppler broadening of resonances and neutron spectrum shift) that contribute to the temperature reactivity coefficient of fuel. The Doppler effect contributes around 30 %-15 % while the rest is due to the thermal spectrum hardening for a temperature range between 300 K and 800 K.

캡슐형 빙축열 시스템의 운전특성에 관한 연구 (A study on the Operating Characteristics of the Capsule-type Ice Storage System)

  • 김경환;조성우;최정민;하석용
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.199-204
    • /
    • 2005
  • The decrease of summer peak electric load of our country is very important. The government is arranging a lot of support policies and statutes. etc. to decrease of peak electric load. And ice storage system is known as one of the alternatives. The purpose of this study is to collect basic data for operating characteristics to plan the most suitable operation of capsule-type ice storage system. The storaging tank is designed to take charge 40% of total cooling load in building, In operation condition the storage tank took charge 50%. Coefficient Of Performance of daily screw refrigerator is around 4.

  • PDF

연간수요예측시스템의 개발 (Development of An Yearly Load Forecasting System)

  • 추진부;이철휴;전동훈;김성학;황갑주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.908-912
    • /
    • 1996
  • The yearly load forecasting system has been developed for the economic and secure operation of electric power system. It forecasts yearly peak load and thereafter deduces hourly load using the top-down approach. Relative coefficient model has been applied to estimate peak load of a specific date or a specific day of the week. It is equipped with graphic user interface which enables a user to easily access to the system. Yearly average forecasting error may be reduced to $2{\sim}3$(%) only if we can forecast summer-time temperature correctly.

  • PDF

저항형 초전도 한류소자의 퀜치 특성 (Quench Characteristics of Resistive Superconducting Fault Current Limiters)

  • 김혜림;현옥배;최효상;황시돌;김상준
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.214-217
    • /
    • 1999
  • We investigated the quench characteristics of meander line type resistive superconducting fault current limiters based on YBCO thin films grown on 2" diameter LaAlO$_3$ substrates. A gold layer was deposited onto the 0.4 ${\mu}$ m thick YBCO film to disperse the heat generated at hot spots, prior to patterning into 1 mm wide meander lines by photolithography. The limiters were tested with simulated fault currents of various amplitudes. The quench started at 10 A and was completed within 1 msec at the fault current of 65 A$_{peak}$. The dynamic quench characteristics were explained based on the heat conduction within the film and the heat transfer between the film and the surrounding liquid nitrogen. The heat transfer coefficient per unit area was estimated to be 3.0 W/cm$^2$K.

  • PDF

달리기 시도 수 증가에 따른 VGRF 신호 성분의 Variability 분석 (Analysis of Variability for the Components of VGRF Signal via Increasing the Number of Attempt during Running)

  • 류지선
    • 한국운동역학회지
    • /
    • 제17권1호
    • /
    • pp.129-134
    • /
    • 2007
  • The purpose of this study was to determine the variability of components of the vertical ground reaction force signal to seek the suitable number of attempt datum to be analyzed during running at 2m/s and 4m/s. For this study, six subjects (height mean:$174.5{\pm}4.4cm$, weight $671.5{\pm}116.4N.$, age:$25.0{\pm}yrs.$) were selected and asked to run at least 3 times each run condition randomly. FFT(fast Fourier transform) was used to analyze the frequency domain analysis of the vertical ground reaction forces signal and an accumulated PSD (power spectrum density) was calculated to reconstruct the certain signal. To examine the deviation of the vertical ground reaction between signals collected from an different number of attempt, variability of frequency, magnitude of passive peak, time up to the passive peak and maximum load rate were determined in a coefficient of variance. The variability analysis revealed that when analyze the vertical reaction force components at 2m/s speed running, which belongs to slow pace relatively, it would be good to calculate these components from signal of one attempt, but 4m/s speed running needs data collected from two attempts to decrease the deviation of signal between attempts. In summary, when analyzing the frequency and passive peak of the vertical reaction force signal during the fast run, it should be considered the number of attempt.

상반전 조류발전 터빈의 형상설계 및 성능예측에 관한 연구 (A Study on the Performance Estimation and Shape Design of a Counter-Rotating Tidal Current Turbine)

  • 김문오;김유택;이영호
    • 해양환경안전학회지
    • /
    • 제20권5호
    • /
    • pp.586-592
    • /
    • 2014
  • 본 연구에서는 BEMT(Blade Element Momentum Theory)에 의해 우선 정격 출력 100 kW인 수평축 조류 발전용 단일 터빈에대한 기본 형상 설계를 진행하고, CFD 해석을 통해 블레이드 주변 유동특성 파악 및 출력 성능 예측을 하였다. 기본적인 에어포일은 FFA-W3-301, DU-93-W210, NACA-63418을 사용하였다. 이를 바탕으로 상반회전 터빈의 특성을 고찰한 결과, 설계 주속비 5.17에서 최대 출력계수는 0.495이며, 터빈의 출력은 101.82 kW를 얻었다.

발전용 터빈 로우터의 수명예측을 위한 열응력 해석 (Thermal Stress Analysis for Life Prediction of Power Plant Turbine Rotor)

  • 임종순;허승진;이규봉;유영면
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.276-287
    • /
    • 1990
  • In this paper research result of transient thermal stress analysis of power plant turbine rotors for life prediction under severs operating conditions is presented. Galerkin's recurrence scheme is used for numerical solution of discretized FEM equation of transient heat conduction equation. Boundary conditions for the equation and operating conditions are intensively investigated for accurate life prediction of turbine rotors in operation. A computer program for on-site application is developed and tested. Distribution of thermal stress in turbine rotors during various operating condition is analyzed with the program and it is found that the peak thermal stress appears during cold stage conditions at the first stage of high pressure rotors.

Numerical analysis to determine fire suppression time for multiple water mist nozzles in a large fire test compartment

  • Ha, Gaghyeon;Shin, Weon Gyu;Lee, Jaiho
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1157-1166
    • /
    • 2021
  • In this study, a numerical sensitivity analysis was performed to determine the fire suppression time for a large number of water mist nozzles in a large fire compartment. Fire simulations were performed using FDS (Fire dynamics simulator) 6.5.2 under the same condition as the test scenario 5 of the International Maritime Organization (IMO) 1165 test protocol. The sensitivities of input parameters including cell size, extinguishing coefficient (EC), droplets per second (DPS), and peak heat release rate (HRR) of fuel were investigated in terms of the normalized HRR and temperature distribution in the compartment. A new method of determining the fire suppression time using FDS simulation was developed, based on the concept of the cut-off time by cut-off value (COV) of the heat release rate per unit volume (HRRPUV) and the cooling time by the HRR cooling time criteria value (CTCV). In addition, a method was developed to determine the average EC value for the simulation input, using the cooling time and cut-off time.