• 제목/요약/키워드: Peak operation

Search Result 810, Processing Time 0.032 seconds

Utilization of Active Diodes in Self-powered Sensorless Three-phase Boost-rectifiers for Energy Harvesting Applications

  • Tapia-Hernandez, Alejandro;Ponce-Silva, Mario;Olivares-Peregrino, Victor Hugo;Valdez-Resendiz, Jesus Elias;Hernandez-Gonzalez, Leobardo
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1117-1126
    • /
    • 2017
  • The main contribution of this paper is the use of sensorless active diodes to generate the gate signals for a three-phase boost-rectifier with a self-powered control scheme. The sensorless operation is achieved making use of the gate control signals generated by the active diode schemes on each of the switching devices using a pulse width half-controlled boost rectifier modulation technique (PWM-HCBR). The proposed scheme synchronizes the gate control signals with a three phase voltage supply. Autonomous operation is obtained making use of the output DC bus to feed the control circuitry, the active diodes and the driver circuitry. The three-phase boost-rectifier is supplied by a three-phase permanent magnet electric generator powered by a solar concentrator dish with variable voltage and variable frequency conditions. Experimental results report an efficiency of up to 94.6% for 25 W and an input of 3.6 V peak per phase with 450.

Microgrid energy scheduling with demand response

  • Azimian, Mahdi;Amir, Vahid;Haddadipour, Shapour
    • Advances in Energy Research
    • /
    • v.7 no.2
    • /
    • pp.85-100
    • /
    • 2020
  • Distributed energy resources (DERs) are essential for coping with growing multiple energy demands. A microgrid (MG) is a small-scale version of the power system which makes possible the integration of DERs as well as achieving maximum demand-side management utilization. Hence, this study focuses on the analysis of optimal power dispatch considering economic aspects in a multi-carrier microgrid (MCMG) with price-responsive loads. This paper proposes a novel time-based demand-side management in order to reshape the load curve, as well as preventing the excessive use of energy in peak hours. In conventional studies, energy consumption is optimized from the perspective of each infrastructure user without considering the interactions. Here, the interaction of energy system infrastructures is considered in the presence of energy storage systems (ESSs), small-scale energy resources (SSERs), and responsive loads. Simulations are performed using GAMS (General Algebraic modeling system) to model MCMG, which are connected to the electricity, natural gas, and district heat networks for supplying multiple energy demands. Results show that the simultaneous operation of various energy carriers, as well as utilization of price-responsive loads, lead to better MCMG performance and decrease operating costs for smart distribution grids. This model is examined on a typical MCMG, and the effectiveness of the proposed model is proven.

Base data establishment of suitability for Toughened Glass Stem Insulator applied in the high speed catenary system (고속전차선로 유리애자 현장 적합성 기반 구축 연구)

  • Jeon, Yong-Joo;Ryu, Young-Tae;Lee, Tae-Hoon;Park, Ki-Bum;Lee, Gi-Chun;Kim, Sun-Goo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.140-143
    • /
    • 2008
  • The Operation of high speed train in year 2004 bring about a great change in railroad industry. Especially in railroad construction field we have acquired great Know-how. And up to now we are building up operation skills. But the high speed train system are totally imported, so it is necessary to investigate some of the equipment based on our own environment. In case of Toughened Glass Stem Insulator, we don't have any application case in domestic and limited in abroad. So there must be some characteristic estimation. This paper introduces estimation methode in three different field. First electrical field, Second physical field and finally environment circumstance. In Electrical field, amplitude and number of time for abnormal peak voltage data are collected. And in physical field case, amplitude and trend of vibration in to the insulator are examined. And I circumstance case, possibility of flying gravel and ice clod are investigated. Through this basic data, suitability for Toughened Glass Stem Insulator using in domestic will be accumulated and estimated.

  • PDF

DEVELOPMENT OF GREEN'S FUNCTION APPROACH CONSIDERING TEMPERATURE-DEPENDENT MATERIAL PROPERTIES AND ITS APPLICATION

  • Ko, Han-Ok;Jhung, Myung Jo;Choi, Jae-Boong
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.101-108
    • /
    • 2014
  • About 40% of reactors in the world are being operated beyond design life or are approaching the end of their life cycle. During long-term operation, various degradation mechanisms occur. Fatigue caused by alternating operational stresses in terms of temperature or pressure change is an important damage mechanism in continued operation of nuclear power plants. To monitor the fatigue damage of components, Fatigue Monitoring System (FMS) has been installed. Most FMSs have used Green's Function Approach (GFA) to calculate the thermal stresses rapidly. However, if temperature-dependent material properties are used in a detailed FEM, there is a maximum peak stress discrepancy between a conventional GFA and a detailed FEM because constant material properties are used in a conventional method. Therefore, if a conventional method is used in the fatigue evaluation, thermal stresses for various operating cycles may be calculated incorrectly and it may lead to an unreliable estimation. So, in this paper, the modified GFA which can consider temperature-dependent material properties is proposed by using an artificial neural network and weight factor. To verify the proposed method, thermal stresses by the new method are compared with those by FEM. Finally, pros and cons of the new method as well as technical findings from the assessment are discussed.

RELAP5 Analysis of the Loss-of-RHR Accident during the Mid-Loop Operation of Yonggwang Nuclear Units 3/4

  • J. J. Jeong;Kim, W. S.;Kim, K. D.;W. P. Chang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.403-410
    • /
    • 1995
  • A loss of the residual heat removal (RHR) accident during mid-loop operation of Yong-gwang Nuclear Units 3/4 was analyzed using the RELAP5/MOD3.1.2 code. In this work the following assumptions are used; (i) initially the reactor coolant system (RCS) above the hot leg center line is filled with nitrogen gas, (ii) two 3/4-inch diameter vent valves on the reactor vessel head and the top of pressurizer in the reactor coolant system are always open, and a level indicator is connected to the RMR suction line, (iii) the two steam generators are in wet layup status and the steam generator atmospheric dump valve assemblies are removed so that the secondary side pressure remains at nearly atmospheric condition throughout the accident, and (iv) the loss of RHR is presumed to occur at 48 hours after reactor shutdown. Findings from the RELAP5 calculations are (i) the core boiling begins at ∼5 min, (ii) the peak RCS pressure is ∼3.0 bar, which implies a possibility of temporary seal break, (iii) ∼94 % of the decay heat is removed by reflux condensation in the steam generator U-tubes in spite of the presence of noncondensable gas, (iv) the core uncovery time is evaluated to be 7.2 hours. Significant mass errors were observed in the calculations.

  • PDF

A Case Report of Gaiting Disturbance with Arteriosclerosis (동맥경화증으로 인한 보행장애 증례 보고)

  • Lee, Jae-Seob;Hwang, Ha-Yeon;Baek, Kyung-min;Jang, Woo-Seok
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.13 no.1
    • /
    • pp.126-133
    • /
    • 2012
  • Object : The Purpose of this study is to report the clinical application of Korean traditional medicine on gait disturbance with arteriosclerosis of lower limbs. Methods : The patient in this case had been already treated by anticoagulation and varicose vein operation for subsiding and improving intermittent claduication and rest pain, but these methods didn't work on the patient. Although the patient was classified as TASC-II D, bypass operation couldn't be treated because of heart disease of the patient. We treated Korean traditional medicine such as acupuncture, moxibustion, Danggwisaeyeoktang. Results : After treatment, peak walking time was increased, rest pain occurrence was decreased and going up and down the stairs was improved. Conclusions : According to this study, Korean traditional medicine such as acupuncture, moxibustion, Danggwisaeyeoktang is effective for the cure of intermittent claudication and rest pain caused by arteriosclerosis of lower limbs.

  • PDF

Numerical analysis of reflood heat transfer and large-break LOCA including CRUD layer thermal effects

  • Youngjae Park;Donggyun Seo;Byoung Jae Kim;Seung Wook Lee;Hyungdae Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2099-2112
    • /
    • 2024
  • This study examined the effects of CRUD on reflood heat transfer behaviors of nuclear fuel rods during a loss-of-coolant-accident (LOCA) in a pressurized water reactor using a best-estimate thermal-hydraulic analysis code. Changes in thermal properties and boiling heat transfer characteristics of the CRUD layer were extensively reviewed, and a set of correction factors to reflect the changes was implemented into the code. A heat structure layer reflecting the effects of CRUDs on the properties was added to the outer surface of the fuel cladding. Numerical simulations were conducted to examine the effects of CRUDs on reflood cooling of overheated fuel rods for representative separate and integral effect tests, FLECHT-SEASET and LOFT. In LOFT analysis, the average cladding temperature was increased due to the low thermal conductivity of CRUD during steady-state operation; however, in both analyses, the peak cladding temperature decreased, and the quenching time was reduced. Obtained results revealed that when the porous CRUD layer is deposited on the fuel cladding, two opposite effects appear. Low thermal conductivity of the CRUD layer always increases fuel temperature during normal operation; however, its hydrophilic porous structures may contribute to accelerated reflood cooling of fuel rods during a LOCA.

Operation Scheduling in a Commercial Building with Chiller System and Energy Storage System for a Demand Response Market (냉각 시스템 및 에너지 저장 시스템을 갖춘 상업용 빌딩의 수요자원 거래시장 대응을 위한 운영 스케줄링)

  • Son, Joon-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.312-321
    • /
    • 2018
  • The Korean DR market proposes suppression of peak demand under reliability crisis caused a natural disaster or unexpected power plant accidents as well as saving power plant construction costs and expanding amount of reserve as utility's perspective. End-user is notified a DR event signal DR execution before one hour, and executes DR based on requested amount of load reduction. This paper proposes a DR energy management algorithm that can be scheduled the optimal operations of chiller system and ESS in the next day considering the TOU tariff and DR scheme. In this DR algorithm is divided into two scheduling's; day-ahead operation scheduling with temperature forecasting error and operation rescheduling on DR operation. In day-ahead operation scheduling, the operations of DR resources are scheduled based on the finite number of ambient temperature scenarios, which have been generated based on the historical ambient temperature data. As well as, the uncertainties in DR event including requested amount of load reduction and specified DR duration are also considered as scenarios. Also, operation rescheduling on DR operation day is proposed to ensure thermal comfort and the benefit of a COB owner. The proposed method minimizes the expected energy cost by a mixed integer linear programming (MILP).

A novel Reversible Data Hiding Scheme based on Modulo Operation and Histogram Shifting (모듈러 연산과 히스토그램 이동에 기반한 새로운 가역 정보 은닉 기법)

  • Kim, Dae-Soo;Yoo, Kee-Young
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.5
    • /
    • pp.639-650
    • /
    • 2012
  • In 2009, Tsai et al. proposed reversible image hiding scheme using linear prediction coding and histogram shifting. Tsai et al.'s scheme improved the hiding capacity of Ni et al.'s scheme by using the prediction coding and two histograms. However, Tsai et al.'s scheme has problems. In the prediction coding, the basic pixel is not used from embedding procedure. Many additional communication data are generated because two peak and zero point pairs are generated by each block. To solve the problems, this paper proposes a novel reversible data hiding scheme based on modulo operation and histogram shifting. In experimental results, the hiding capacity was increased by 28% than Tsai et al.'s scheme. However, the additional communication data was decreased by 71%.

Development of Electrical Safety Evaluation Method about PEMFC 1kW (가정용연료전지 전기적 안전성 평가 기법 개발)

  • Han, Woonki;Park, Chaneum;Jung, Jinsu;Ko, Woonsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.99-99
    • /
    • 2011
  • Fuel cell systems are a completely different form of electricity source that has been used so far and is an aggregation of multiple technologies with multidisciplinary features that can be operated safely only when gas and electrical safety are being considered. Since fuel cells generate through electrochemical reactions there are difficulties in ensuring electricity safety, power quality assessment, effective control and reliability standards for system faults using conventional inspection techniques and even though they are necessary as a primary means for reduction of CO2 owing to the Climate Convention, electrical safety assessment and measures are required for the prevention of faults in residential facilities. Although small-scaled distributed power supplies can be utilized as important means of peak control and energy management measures, research is required for observing the effects on the system and the development of inspection technology to ensure stable operation, and the electrical safety of residential fuel cell systems need to be assessed and the problems derived for establishing electrical safety standards. From the year 2002, Japan has established laws on technical safety standards and development and rules on the product specifications and standards for the industrialization of hydrogen fuel cells. Also, a lot of effort have been made for the commercialization of fuel cells by building one-stop certification services. Internationally, the IEC TC 105 has established international standards based on fuel cells. In order to protect the national interest, the country should be able to respond accordingly meet global standards. In fact, in Korea, to comply with the international trend, Korea Energy Management Corporation is establishing a certified agenda for fuel cells and Korean Agency for Technology and Standards is enacting technical standards for fuel cells. The current terms of fuel cells are that research has been focused more on the quality and performance of manufactured products rather than stable power operation and maintenance over time. In this paper, by considering the household fuel cell as a power device, the safety standards of the fuel cell system for a reliable operation with the existing power system is being proposed.

  • PDF