• Title/Summary/Keyword: Peak interference

Search Result 190, Processing Time 0.026 seconds

On the Capacities of Spectrum-Sharing Systems with Transmit Diversity

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.99-103
    • /
    • 2010
  • Motivated by recent works on spectrum-sharing systems, this paper investigates the effects of transmit diversity on the peak interference power limited cognitive radio(CR) networks. In particular, we derive the ergodic and outage capacities of a spectrum-sharing system with multiple transmit-antennas. To derive the capacities, peak interference power constraint is imposed to protect the primary receiver. In a CR transmitter and receiver pair with multiple antennas at the transmitter side, the allowable transmit power is distributed over the transmit-antennas to achieve transmit diversity at the receiver. We investigate the effect of this power distribution when a peak interference power constraint is imposed to protect the primary receiver. We show that the transmit diversity does not improve the ergodic capacity compared to the single-antenna system. On the other hand, the transmit diversity significantly improves the outage capacity. For example, two transmit-antennas improve the outage capacity 10 times compared to the single-antenna with a 0 dB interference constraint.

An Iterative MUSIC-Based DOA Estimation System Using Antenna Direction Control for GNSS Interference

  • Seo, Seungwoo;Park, Youngbum;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.367-378
    • /
    • 2020
  • This paper introduces the development of the iterative multiple signal classification (MUSIC)-based direction-of-arrival (DOA) estimation system using a rotator that can control the direction of antenna for the global navigation satellite system (GNSS) interference. The system calculates the spatial spectrum according to the noise eigenvector of all dimensions to measure the number of signals (NOS). Also, to detect the false peak, the system adjusts the array antenna's direction and checks the change's peak angles. The phase delay and gain correction values for system calibration are calculated in consideration of the chamber's structure and the characteristics of radio waves. The developed system estimated DOAs of interferences located about 1km away. The field test results show that the developed system can estimate the DOA without NOS information and detect the false peak even though the inter-element spacing is longer than the half-wavelength of the interference.

Interference Tolerant Based CR System with Imperfect Channel State Information at the CR-Transmitter

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.2
    • /
    • pp.128-132
    • /
    • 2011
  • In interference tolerance based spectrum sharing systems, primary receivers (PRs) are protected by a predefined peak or average interference power constraint. To implement such systems, cognitive radio (CR) transmitters are required to adjust their transmit power so that the interference power received at the PR receivers is kept below the threshold value. Hence, a CR-transmitter requires knowledge of its channel and the primary receiver in order to allocate the transmit power. In practice, it is impossible or very difficult for a CR transmitter to have perfect knowledge of this channel state information (CSI). In this paper, we investigate the impact of imperfect knowledge of this CSI on the performances of both a primary and cognitive radio network. For fixed transmit power, average interference power (AIP) constraint can be maintained through knowledge of the channel distribution information. To maintain the peak interference power (PIP) constraint, on the other hand, the CR-transmitter requires the instantaneous CSI of its channel with the primary receiver. First, we show that, compared to the PIP constraint with perfect CSI, the AIP constraint is advantageous for primary users but not for CR users. Then, we consider a PIP constraint with imperfect CSI at the CR-transmitter. We show that inaccuracy in CSI reduces the interference at the PR-receivers that is caused by the CR-transmitter. Consequently the proposed schemes improve the capacity of the primary links. Contrarily, the capacities of the CR links significantly degrade due to the inaccuracy in CSI.

Analysis on Power Parameter of Multiuser Interference under various UWB Multiple Access Schemes (초광대역 다중접속 방식에 따른 다중사용자 간섭신호의 전력 파라미터 분석)

  • Lee, Joon-Yong;Kim, ChangKyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.96-107
    • /
    • 2013
  • In this study, we examine the effect of spreading sequence matched filtering on the power parameters of ultrawideband (UWB) multiuser interference (MUI) under different multiple access (MA) scenarios. More specifically, we investigate the manner in which the length of the sequence MF affects the average power, peak power, and the peak-to-average ratio (PAR) of the matched filtered version of an MUI signal. The results of the analysis performed for a simplified scenario are supported by the simulation results obtained for a realistic multipath environment.

Asymptotic Capacity Analysis in Multipoint-to-Point Cognitive Radio Networks with an Arbitrary Peak Power

  • Ji, Jianbo;Chen, Wen;Sun, Shanlin
    • Journal of Communications and Networks
    • /
    • v.15 no.6
    • /
    • pp.576-580
    • /
    • 2013
  • In this paper, we investigate the capacity of a multipoint-to-point cognitive radio network. In existing works, the asymptotic capacity is only obtained in the high peak power region at secondary transmitter (ST) or obtained without considering the interference from primary transmitter (PT) for easy analysis. Here, we analyze the asymptotic capacity by considering an arbitrary peak power at the ST and the interference from the PT based on extreme value theory. Simulation results show that our approximated capacity is well-matched to the exact capacity. Furthermore, the scaling law of our capacity is found to be double logarithm of the number of secondary users.

Performance of Interference Mitigation with Different Wavelets in Global Positioning Systems

  • Seo, Bo-Seok;Park, Kwi-Woo;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.165-173
    • /
    • 2019
  • In this paper, we apply a discrete wavelet packet transform (DWPT) to reduce the influence of interference in global positioning system (GPS) signals and compare the interference mitigation performance of various wavelets. By applying DWPT to the received signal, we can gradually divide the received signal band into low-pass and high-pass bands. After calculating the average power for the separate bands, we can determine whether there is interference by comparing the value with the given threshold. For a band that includes interference, we can reconstruct the whole band signal using inverse DWPT (IDWPT) after applying a nulling method that sets all of the wavelet coefficients to 0. The reconstructed signals are correlated with the pseudorandom noise (PRN) codes to acquire GPS signals. The performance evaluation is based on the number of satellite signals whose peak ratio (defined as the ratio of the first and second correlation peak values in the acquisition stage) exceeds the threshold. In this paper, we compare and evaluate the performance of 6 wavelets including Haar, Daubechies, Symlets, Coiflets, Biorthogonal Splines, and Discrete Meyer.

Binary Nonlinear Joint Transform Correlator with Sinusoidal Iterative Filter in Spectrum Domain

  • Jeong, Man-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • The joint transform correlator (JTC) has been the best known technique for pattern recognition and identification. This paper proposes a new technique of fringe adjustment by adopting a sinusoidal amplitude-modulated iterative filter convolved with an interference fringe pattern in the joint power spectrum (JPS) domain. The comparison of our new technique and other techniques is presented to show that the newly proposed technique can successfully improve both the correlation peaks and the peak signal-to-noise ratio (PSNR). Simulated results of enhanced interference fringes are also presented.

Peak-to-zero modulation of optical absorption via electrically controllable quantum interference

  • Lee, Byoung-Ho;Kim, Kyoung-Youm
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.33-36
    • /
    • 2002
  • We propose a modulation scheme of optical absorption in a coupled asymmetric quantum well (QW) structure via electrically controllable quantum interference. It is based on the parallel-perpendicular energy coupling effect. We show that by applying an external electric Held in the parallel direction (to the QW layers), we can obtain a maximum (peak-type) absorption at a specific wavelength where absorption cancellation would occur due to electrically induced transparency without such an external Held .

Analysis on Co-channel Interference of Human Body Communication Supporting IEEE 802.15.6 BAN Standard

  • Hwang, Jung-Hwan;Kang, Tae-Wook;Kim, Youn-Tae;Park, Seong-Ook
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.439-449
    • /
    • 2015
  • Human body communication (HBC) is being recognized as a new communication technology for mobile and wearable devices in a body area network (BAN). This paper presents co-channel interference experienced by HBC supporting the physical layer in the IEEE 802.15.6 BAN standard. To analyze the co-channel interference, a co-channel interference model is introduced, and space-domain and time-domain parameters representing an interference environment are generated using the co-channel interference model. A new signal-to-interference ratio (SIR) parameter depending on the peak amplitudes of the data signals causing co-channel interference is defined; co-channel interference can be easily analyzed and modelled using the newly defined SIR. The BER degradation model derived using the co-channel interference model and SIR in this paper can be effectively used to estimate the performance.

On the Outage Behavior of Interference Temperature Limited CR-MISO Channel

  • Kong, Hyung-Yun;Asaduzzaman, Asaduzzaman
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.456-462
    • /
    • 2011
  • This paper investigates the outage behavior of peak interference power limited cognitive radio (CR) networks with multiple transmit antennas. In CR-multi-input single-output (MISO) channel, the total transmit power is distributed over the transmitantennas. First, we use the orthogonal space-time codes (STC) to achieve the transmit diversity at CR-receiver (rx) and investigate the effect of the power distribution on the interference power received at the primary-receiver (P-rx). Then, we investigate the transmit antenna selection (TAS) scheme in which the CR system selects the best transmit antenna and allocates all the power to the selected best antenna. Two transmit antenna selection strategies are proposed depending on if feedback channel is available or not. We derive the closed form expressions of outage probability and outage capacity of all schemes with arbitrary number of transmit-antennas. We show that the proposed schemes significantly improve the outage capacity over the single antenna systems in Rayleigh fading environment. We also show that TAS based scheme outperforms the STC based scheme when peak interference power constraint is imposed on the P-rx only if a feedback channel from CR-rx to CR-transmitter is available.