• Title/Summary/Keyword: Peak force

Search Result 732, Processing Time 0.022 seconds

Effect of Shoe Size on Foot Pressure, Ground Reaction Force, and Fatigue During Walking and Running (보행과 달리기 시 신발의 크기가 족저압과 지면반발력, 하지의 근피로에 미치는 영향)

  • Kim, Tack-Hoon
    • Physical Therapy Korea
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • The purpose of this study was to assess the influence of two shoe size conditions on foot pressure, ground reaction force (GRF), and lower extremity muscle fatigue. Seven healthy men participated. They randomly performed walking and running in two different conditions: proper shoe size and 10 mm greater than proper shoe size. Peak foot pressure, and vertical, anterior and mediolateral force components were recorded with the Parotec system and Kisler force platform. To assess fatigue, the participants performed treadmill running for twenty-five minutes twice, each time wearing a different shoe size. Surface electromyography was used to confirm localized muscle fatigue using power spectral analysis of four muscles (tibialis anterior, gastrocnemius medialis, rectus femoris, and biceps femoris). The results were as follows: 1) In walking conditions, there was a significantly higher peak pressure in the 10 mm greater than proper shoe size insole sensor 1, 2, 14, and 18 (p<.05). 2) In running conditions, there was a significantly higher peak pressure in the 10 mm greater than proper shoe size insole sensor 5, 14, and 15 (p<.05). 3) In walking conditions, there was a significantly higher first maximal vertical GRF in the 10 mm greater than proper shoe size (p<.05). 4) In running conditions, no GRF components were significantly different between each shoe size condition (p>.05). 5) Muscle fatigue indexes of the tibialis anterior and rectus femoris were significantly increased in the 10 mm greater than proper shoe size condition. These results indicate that wearing shoes that are too large could further exacerbate the problems of increased foot pressure, vertical GRF, and muscle fatigue.

  • PDF

Vertical Ground Reaction Force Asymmetry in Prolonged Running

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.1
    • /
    • pp.29-35
    • /
    • 2018
  • Objective: The purpose of this study was to determine the asymmetry of vertical ground reaction force (GRF) components between dominant and non-dominant legs in rested and fatigued states in prolonged running. Method: Twenty healthy men, heel strikers, were included (age: $24.00{\pm}5.0years$; height: $176.1{\pm}6.0cm$; body mass: $69.0{\pm}6.0kg$) in this study. Subjects ran on an instrumented treadmill for 130 minutes. During treadmill running, GRF data (1,000 Hz) were collected for 20 strides at five minutes (rested) and 125 minutes (fatigued) running while they were unaware of collecting data. Asymmetry indexes (ASI) were calculated to quantify the asymmetry magnitude in rested and fatigued states. Paired t-test was used to verify the differences between dominant and non-dominant legs in rested and fatigued states. In addition, one-way repeated measure analysis of variance was applied for comparison of ASI of both states. The level of significance was set at p < .05. Results: Passive force peak magnitude, loading rate, and impulse affecting the development of running injury were found significantly greater in dominant leg than in non-dominant leg at rested state (p < .05). However, passive force peak time and active force peak magnitude were found significantly different between legs in fatigued state (p < .05). To determine changes in percentage of asymmetry between legs in both states, ASI was used. ASI for all variables increased in fatigued state; however, no significant differences were found between both states. Conclusion: This study found that fatigue did not affect differences in vertical GRF between dominant and non-dominant legs and asymmetry changes.

A comparison study for mask plantar pressure measures to the difference of shoes in 20 female (20대 여성의 신발종류에 따른 족저압 영역별 비교 연구)

  • Kim, Y.J.;Ji, J.G.;Kim, J.T.;Hong, J.H.;Lee, J.S.;Lee, H.S.;Park, S.B.
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.83-98
    • /
    • 2004
  • The purpose of this study was to investigate the test-retest of plantar pressures using the F-Scan system over speeds and plantar regions. 6 healthy female subjects in 20's were recruited for the study. Plantar pressure measurements during locomotor activities can provide information concerning foot function, particularly if the timing and magnitude of the loading profile can be related to the location of specific foot structures such as the metatarsal heads. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right. left shoes - sneakers shoes & dress shoes. It was calibrated by the known weight of the test subject standing on one foot. The Tekscan measurements show the insole pressure distribution as a function of the time. This finding has important implications for the development of plantar pressure test protocols where the function of the forefoot is important. According to the result of analysis it is as follows 1) Center of force trajectory in women's dress shoes display direct movement, compare with center of force trajectory in Sneaker shoes displays a little bit curved slow pronation movement. Sneaker shoes in forefoot part display very quick supination movement, therefore, this shoes effects negative effectiveness for ankle's stability Considering center of force trajectory analyzing the more center of force close straight line, the more movement can be quick movement for locomotion. For foot pressure distribution, center of force trajectory in locomotion is better to curved trajectory with pronation movement. So sneaker shoes style is good shoes considering center of pressure distribution trajectory compare with women's dress shoes. 2) Women's dress shoes increased peak pressure in medial, this is effected by high hill's height. The more increased women's dress shoes's height, the more women's peak pressure will increase, pronation can increase compare with before. Supination movement increase, this focused pressure in lateral, also, supination increased more. If the supination movement increased, foot pressure focused in lateral, therefore, it is appeared force distribution in gait direction. This is bad movement in foot's stability. 3) Women's dress shoes in landing phase displayed a long time, this is when women's dress shoes wear, gait movement is unbalance, so, landing phase displayed a long time. For compensation in gait, swing phase quick movement. 4) Women's dress shoes displayed peak pressure distribution in lateral of rearfoot part, Sneakers shoes displayed peak pressure distribution in medial of forefoot part. Its results has good impact absorption compare with women's dress shoes. In forefoot part, sneakers shoes has good propulsive force compare with women's dress shoes.

Analysis on the Factors Affecting the Results of Full Frontal Barrier Impact Test (고정벽 정면충돌시험 결과에 미치는 요인 분석)

  • Lim, Jaemoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.3
    • /
    • pp.5-9
    • /
    • 2016
  • The objective of this study was to find the factors affecting the results of full frontal barrier impact test for the NCAP (New Car Assessment Program). To find the factors, the frontal NCAP test results of the NHTSA (National Highway Traffic Safety Administration) were utilized. The three tested vehicle were same model year. It was observed the second peak value of barrier force affected the occupant injury risk. As the second peak value of the barrier force increases, the injury risk of the driver side occupant increases as well.

Dynamic Analysis of Metal Transfer in Pulsed-GMAW (Pulsed-GMAW의 금속 이행 현상에 관한 동적 해석)

  • 최상균;유중돈;박상규
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.84-91
    • /
    • 1997
  • The metal transfer phenomenon of the pulsed-GMAW is simulated by formulating the electromagnetic force incorporated with the Volume of Fluid algorithm. The free surface profiles, pressure and velocity distributions within the drop are computed numerically. Axial velocity and acceleration generated during peak current period are found to have a significant effect on drop detachment. Therefore, the accelerated inertia force becomes one of important factors affecting metal transfer in the pulsed-GMAW. When the pulse current parameters are selected properly, the molten drop is detached just after current pulse, and the operating range of the pulsing frequency increases with higher peak current and duty cycle. Calculated operating ranges show reasonably good agreements with the available experimental data.

  • PDF

Vertical ground reaction force in the treadmill walking and running (Treadmill에서의 보행 및 주행 시의 수직 지면반발력)

  • Yang, G.T.;Kim, Y.H.;Lim, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.339-342
    • /
    • 1996
  • Vertical ground reaction forces on a treadmill were measured at different walking speeds using two tandem force plates. Comparing vertical ground reaction forces in treadmill walking with those in ground free walking, treadmill walking overestimated the first and second peak forces. With the increase of the walking speed, this phenomenon becomes more significant. In treadmill running, the first peak force reached 210-280% of the body weight. However, the instrumented treadmill showed a great potential to investigate the kinetics for multiple foot-strike measurements.

  • PDF

Kinetic Gait Analysis of a Dog with Knee Osteoarthiritis Treated with Acupuncture (무릎관절 골관절염이 있는 개에서 침술 적용 효과에 대한 역학적 보행분석 1례)

  • 김순영;정성목;서강문;남치주
    • Journal of Veterinary Clinics
    • /
    • v.20 no.4
    • /
    • pp.504-507
    • /
    • 2003
  • Force plate analysis was used to describe the effect of acupuncture on right knee osteoarthritis (OA) in a seven-year-old hound breed dog weighing 27 kg. The acupuncture treatment was performed twice a week for 3 weeks. Ground reaction forces (GRFs) and subjective clinical scores in both hind limbs were obtained prior to and 72 hours after each treatment. Right vertical peak force was increased as the dog was acupunctured. Although their sensitivity was lower than that of the GRF data, the subjective clinical scores reflected an improvement. In addition, vertical peak force of normal left hind limb was also increased during this trial. These results indicate that gait analysis may be valuable objective method in future evaluation of acupuncture for OA of the stifle joint.

The effects of kinesio taping of thigh muscle on isokinetic muscular function during closed kinetic chain exercise of lower extremity (하지의 닫힌 사슬 운동시 대퇴부 테이핑 적용이 등속성 근기능에 미치는 영향)

  • Kim, Sang-Yeup;Yoon, Young-Ieoi;Choi, Won-Jye
    • PNF and Movement
    • /
    • v.8 no.3
    • /
    • pp.9-16
    • /
    • 2010
  • Purpose : The purpose of this study was to investigate effects of kinesio taping of thigh muscle on isokinetic muscular function during closed kinetic chain exercise of lower extremity. Methods : Twenty healthy males were participated in this study. The isokinetic muscular function of closed kinetic chain were measured for peak torque, peak torque % body weight, average power, max rep tot work before and after application of kinesio taping on thigh muscles. Results : At $60^{\circ}/s$ peak force and peak force % body weight were significant increased in both extension(p<0.01) and flexion(p<0.001) after applying kinesio taping. At $180^{\circ}/s$ average power was significant increased in both extension and flexion after applying taping(p<0.001). At $240^{\circ}/s$ max rep tot work was significant increased in both extension(p<0.001) and flexion(p<0.05). Conclusion : This study suggests that application of kinesio taping on thigh muscle was more effective to improve isokinetic muscular function in closed kinetic chain exercise of lower extremity.

  • PDF

Reduction of Radiated Noise in a Reciprocating Compressor (왕복동식 압축기의 방사소음 저감)

  • Kim, Yong-Tae;Lee, Jin-Woo;Joo, Jae-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.431-434
    • /
    • 2005
  • Generally, noise in a reciprocating compressor is attributed to the driving force of a pump. However, close examination shows that the noise heard by customers finally results from radiation of a shell in a compressor, the noise caused by both transmission through a shell and resonance with the natural frequency of a shell. Therefore, the peak frequencies contributing to the overall level of a compressor' noise are closely concerned with vibration of a shell. That's why radiated noise by vibration can be reduced by changing the mode of a shell and by shifting the peak frequencies to other ranges, which are not globally related with the overall noise level. In this paper, the main peak frequencies are analyzed to reduce the radiated noise of a shell, and the vibration characteristics of a shell are examined through Frequency Response Function and Finite Element Analysis. Moreover, the Operational Deflection Shape for a shell is measured with consideration of real driving force of a pump. Finally, the optimum position on a shell, closely related to the main peak frequencies, is found, and the overall noise level caused by radiated noise of a shell is noticeably reduced by mass or stiffness modification of the position.

  • PDF

Effects of Kinematics and Kinetics of the Lower Extremities Joint during Drop Landing in Adult Women with Patellofemoral Pain Syndrome (슬개대퇴동통증후가 성인 여성의 드롭랜딩 시 하지 주요관절의 운동역학적 변화에 미치는 영향)

  • Jeon, Kyoungkyu;Yeom, Seunghyeok
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.64-71
    • /
    • 2021
  • Objective: This study investigated the different in isokinetic peak strength of the knee joint, and kinetics and kinematics in drop landing pattern of lower limb between the patellofemoral pain syndrome (PFPS) patients and normal. Method: 30 adult females were divided into the PFPS (age: 23.13±2.77 yrs; height: 160.97±3.79 cm, weight: 51.19±4.86 kg) and normal group (age: 22.80±2.54 yrs, height: 164.40±5.77 cm, weight: 56.14±8.16 kg), with 15 subjects in each group. To examine the knee isokinetic peak strength, kinematics and kinetics in peak vertical ground reaction force during drop landing. Results: The knee peak torque (Nm) and relative strength (%) were significantly weaker PFPS group than normal group. In addition, PFPS group had significantly greater hip flexion angle (°) than normal group. Moreover, normal group had significantly greater moment of hip abduction, hip internal rotation, and left ankle eversion than PFPS group, and PFPS group had significantly greater moment of knee internal rotation. Finally, there was significant differences between the groups at anteroposterior center of pressure. Conclusion: The PFPS patients had weakened knee strength, and which can result in an unstable landing pattern and cause of more stress in the knee joints despite to effort of reduce vertical ground reaction force.