디지털 영상 처리는 군사, 의료, 영상인식 시스템, 로봇, 산업 등의 여러 분야에서 다양하게 활용되고 있다. 그러나 디지털 영상은 영상을 획득, 전송하는 과정에서 여러 외부 원인에 의해 발생된다. 일반적으로 영상에 중첩되는 잡음에는 발생 원인과 형태에 따라 다양하며, AWGN 및 임펄스 잡음이 대표적이다. 영상처리에서 잡음 제거는 영상 분할, 영상 인식, 특징 추출 등의 전처리 과정에서 필수적이다. 따라서 본 논문은 영상에 첨가된 잡음을 효과적으로 제거하기 위해, 캐니 에지를 이용하여 비에지 영역과 에지 영역을 구분하여 각 영역에 따라 필터를 다르게 적용하여 처리하는 알고리즘을 제안하였다. 그리고 제안한 알고리즘의 우수성을 입증하기 위해, 확대 영상, 에지 영상 및 PSNR(peak signal to noise ratio)을 이용하여 기존의 방법들과 성능을 비교하였다.
보간 기법이 영상 확대에 널리 사용되고 있다. 보간 기법을 사용하여 확대한 영상은 입력 영상의 픽셀들과 입력 영상의 픽셀들을 사용하여 보간 된 픽셀들로 구성된다. 선형적인 값을 갖는 보간 픽셀 값들은 실제 영상의 특성인 지역성을 갖지 못하는 한계가 있다. 따라서 실제영상에 존재하는 지역성을 갖도록보간 픽셀들을 추정하면 확대 영상은 실제 영상에더욱 가깝게 된다. 입력영상에 존재하는 인접 픽셀들의 특성을 이용하여 보간을 수행함으로 보간픽셀들이 지역성을 갖도록 하여 확대 영상의 화질을 개선하는 효율적인 보간 기법이 본 논문에서 제안되었고 제안된 기법을 사용하여 확대한 영상의 화질이 향상되었다. 제안된 기법의 성능을 평가하기 위한 실험에서 PSNR(Peak Signal to Noise Ratio)을 사용하였다. 제안된 기법을 적용하여 확대한 여러 영상들의 PSNR 값들이 기존의 보간 기법들을 사용하여 확대한 영상들의 PSNR 값들보다 큰 것을 확인하였다.
전산화단층촬영장치 (computed tomography, CT)는 다른 방사선 촬영 장치와 비교하면 피폭이 많다는 문제점이 있다. 이러한 피폭을 감소하기 위하여 저선량 촬영을 하게 되면 영상에 잡음이 증가하게 된다. 이를 보완하기 위해 환자의 피폭선량은 감소시키면서 영상의 화질을 향상하는 다양한 잡음 제거 알고리즘이 개발되었으며, 그 중 우수한 시간 분해능을 가진 CT 장치에 효과적으로 적용할 수 있는 median modified Wiener filter (MMWF) 알고리즘이 제시되었다. 본 연구의 목적은 MMWF 알고리즘의 마스크 크기를 최적화하고, 기존의 알고리즘들에 대한 MMWF 알고리즘의 잡음 제거의 우수성을 보는 것이다. MATLAB 프로그램을 이용하여 획득한 Gaussian 잡음이 부가된 MASH 팬텀 복부 영상들로부터 각각의 마스크 크기가 설정된 MMWF 알고리즘을 적용한 후 root mean square error (RMSE), peak signal-to-noise ratio (PSNR), coefficient correlation (CC) 그리고 universal image quality index (UQI) 값을 비교하였다. 그 결과 5 × 5 마스크 크기에서 RMSE 값이 가장 낮고, PSNR, CC, UQI 값이 가장 높았다는 것을 확인할 수 있었다. 또한, 최적화된 마스크 크기로 Gaussian 필터, median 필터, Wiener 필터에 대한 MMWF의 RMSE, PSNR, CC, UQI 값을 비교하였으며 그 결과 MMWF 알고리즘에서 가장 개선된 RMSE, PSNR, CC, UQI 값을 얻을 수 있었다.
영상 신호처리 시스템의 전송 과정에서 여러 가지 원인으로 영상의 열화가 발생하고 있으며 열화의 주된 원인은 잡음에 의한 것으로 알려져 있다. 임펄스 잡음환경에 의해 훼손된 영상의 잡음을 제거하는 대표적인 방법은 SM(standard median filter)가 많이 사용되고 있으며 이 필터는 영상의 에지영역에서 특성이 저하되는 경향이 있다. 따라서 본 논문에서는 비임펄스 신호를 스무딩시키면서 에지를 보존하는 비선형 필터를 제안하였다. 그리고 시뮬레이션을 통해 기존의 방법들과 그 성능을 비교한 결과 영상의 개선 정도를 나타내는 PSNR(peak signal to noise ratio)의 수치가 기존의 방법들보다 우수하였으며, 에지보존특성도 우수하였다. 본 논문에서 제안한 비선형 필터는 영상의 임펄스 잡음제거에 유용하게 응용될 것으로 사료된다.
본 논문은 SVM(Support Vector Machine)을 이용하여 공격에 강인한 워터마크 디코딩 모델을 제안한다. 이 모델은 워터마크 된 신호에 대해 워터마크 삽입 과정을 역으로 수행한 후 SVM을 이용하여 워터마크를 검출한다. SVM을 생성하기 위해 먼저 4가지 워터마킹 알고리즘을 이용하여 삽입한 워터마크를 추출하여 데이터를 만들고, 이들의 BER(Bit Error Rate)을 이용하여 문턱값을 구한다. 이 후, 이 문턱값을 기준으로 훈련 집합을 만든다. 강인성 검증을 위해 워터마크 된 신호에 StirMark, SMDI, STEP2000 벤치마킹 중에서 14개의 공격을 가하였는데, 그 결과 기존의 방법보다 PSNR(Peak Signal to Noise Ratio)과 BER이 모두 개선되었다. 특히, PSNR이 10 dB 이상인 경우에는 대부분의 공격에서 1 % 이내의 BER을 갖는 우수한 성능을 보였다.
본 논문은 문서의 보안과 손실 및 오염에 대하여 복원능력을 향상시키는 방안을 제안한다. 이를 위해서 암호화로 DnCNN(DeNoise Convolution Neural Network)을 제시한다. 암호화 방법을 구현하기 위하여 2D이미지정보를 광학에 사용되는 공간주파수 전달함수(Spatial Frequency Transfer Function)의 수학적 모델을 적용한다. 공간 주파수 전달함수를 사용하여 광학적 간섭 패턴을 암호화로 사용하고 공간 주파수 전달함수의 수학적 변수를 복호화하는 암호로 사용하는 방법을 제안하였다. 또한, 딥러닝을 적용한 DnCNN 방법을 적용하여 노이즈 제거하여 복원 성능을 개선한다. 실험결과, 65%의 정보 손실이 있는 경우에도 Pre-Training DnCNN Deep Learning을 적용한 결과 공간 주파수 전달함수만을 활용한 복원 결과 와 비교하여 PSNR(Peak Signal-to-noise ratio)을 11% 이상 우수한 성능을 확인할 수 있다. 또한, CC(Correlation Coefficient)의 특성도 16% 이상 우수한 결과를 보이고 있다.
BTC (Block Truncation Coding) 영상 압축은 하드웨어 구현이 간단하고, 영상의 에지 보존 능력이 뛰어나, LCD 오버드라이브의 압축 기법으로 널리 사용되어지고 있다. 본 논문에서는 높은 화질을 유지하고 높은 압축률을 얻기 위한 방법으로, Multi-Mode BTC (MM-BTC) 알고리즘을 제안한다. 본 논문에서 제안하는 advanced Y-based BTC 방법으로 RGB 각각의 비트맵을 하나의 비트맵으로 단일화 하여 압축 율을 높였고, 본 논문에서 제안하는 improved 2-level 와 4-level BTC 방법을 사용하여 높은 화질을 얻도록 하였다. 시뮬레이션 확인 결과, MM-BTC 는 기존 연구된 BTC 알고리즘 결과보다 최대 2.34 dB 높은 정지 영상 PSNR(Peak Signal to Noise Ratio)결과를 확인 할 수 있었다. LCD overdrive 에 적용한 동영상 PSNR과 비교 결과, MM-BTC 가 기존 연구된 BTC 알고리즘 결과보다 최대 2.33 dB 높은 PSNR 결과가 확인되었다.
스테가노그래피는 데이터 안에 데이터를 은폐하는 기술로, 전달 매체의 존재가 발각되지 않도록 하는 것이 주요목적이다. 현재 스테가노그래피 관련 연구는 알고리즘을 기반으로 정립된 은닉 기법, 검출 기법들에 관련해서 다양하게 연구되고 있지만, 소프트웨어 성능을 분석하기 위한 실험 중심의 연구는 상대적으로 부족하다. 본 논문은 서로 다른 알고리즘으로 데이터를 은폐하는 다섯 개의 스테가노그래피 소프트웨어의 특징을 파악하고, 평가하는 데 목적을 두었다. 스테가노그래피 소프트웨어의 성능 조사를 위하여 시각 평가 척도로 사용되는 PSNR(Peak Signal to Noise Ratio), SSIM(Structural SIMilarity)을 이용하였다. 스테가노그래피 소프트웨어를 통하여 임베딩한 스테고 이 미지들의 PSNR, SSIM을 도출하여 정량적 성능 비교 분석한다. 평가 척도에 따라 우수한 스테가노그래피 소프트웨어를 소개하여 포렌식에 기여 하고자 한다.
현재, 디지털 시대의 급속 발전과 함께 멀티미디어 관련 영상 장치들이 대중화 되고 있다. 그러나 영상 데이터는 전송하는 과정에서 여러 원인으로 열화가 발생하며 주로 salt and pepper 잡음이 대표적이다. salt and pepper 잡음을 제거하기 위한 대표적인 방법에는 SWMF, RSIF, MNRF가 있으며 기존의 방법들은 고밀도 salt and pepper 잡음 환경에서 잡음 제거 특성이 다소 미흡하다. 따라서 본 논문에서는 salt and pepper 잡음을 제거하기 위해 잡음 판단 후, 중심화소가 비잡음인 경우 원 화소 그대로 보존하고, 잡음인 경우, 국부 마스크 네 방향으로 세분화하여 비잡음 화소가 가장 많은 방향에 대해 3차 스플라인 보간법을 적용하여 처리하는 알고리즘을 제안하였다. 그리고 객관적 판단을 위해 기존의 방법들과 비교하였으며, 판단의 기준으로 PSNR(peak signal to noise ratio)을 사용하였다.
본 논문은 다시점 카메라로부터 획득된 영상을 이용하여 영상내의 모든 화소에 대한 정확한 변이 정보를 구하는 알고리듬을 제안한다. 제안한 방법은 객체의 경계 정보를 고려하여 초기 변이를 예측한 후 획득된 변이 정보를 이용하여 탐색 범위를 줄임으로 써 효율적으로 변이를 예측한다. 또한 가변 블록을 사용하여 텍스쳐 정보가 부족한 영역과 경계부분에서 발생하는 오정합 문제를 줄일 수 있다. 획득된 변이 맵 정보를 이용하여 중간시점영상을 생성한 결과 기존의 블록기반 변이 추정방식과 화소기반의 변이 예측방식에 비해 $0.1dB{\sim}1.2dB$의 PSNR(Peak signal to noise ratio)이 향상되는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.