• 제목/요약/키워드: Peak Height

검색결과 656건 처리시간 0.032초

광조사 시간이 접착제의 표면 미중합층의 두께와 전단접착강도에 미치는 영향에 관한 연구 (Influence of the curing time for the adhesive on the oxygen-inhibited layer thickness and the shear bond strength to dentin)

  • 최용훈;배지현;손호현;이인복;백승호;엄정문;김오영;김창근;조병훈
    • Restorative Dentistry and Endodontics
    • /
    • 제29권2호
    • /
    • pp.177-184
    • /
    • 2004
  • 본 연구는 광중합형 상아질 접착제에서 광조사 시간의 증가가 접착제 표면의 미중합층에 대한 영향과 그에 따른 전단접착강도에 대해 연구하고자 120개의 치아를 아크릴 몰드에 식립한 후 상아질이 노출되도록 연마하였다. 3종류의 접착제 〔All Bond2 (AB2), One-Step (OS) and Adper Prompt (AP)〕를 40개 치아에 제조사의 지시대로 도포한 후 각각 다른 광조사 시간 (10, 20, 30 and 60sec)동안 광조사 하고 복합레진을 접착한 24시간 후 전단접 착강도를 측정하였다. 미중합층의 두께와 중합률은 슬라이드 글라스와 FT-NIR을 이용하여 FT-NIR spectrum에서의 peak height를 비교 측정하여 다음과 같은 결론을 얻었다. 1. 전단접착강도에서 AB2는 20초 이후 감소하고, AP는 30초까지 증가하였으며,OS는 차이를 보이지 않았다. 2. 미중합층 두께는 3가지 접착제 모두 유의성 있는 차이를 보이지 않았다. 3. 중합률에서 OS는 10초와 나머지군 사이에 유의성 있는 차이를, AP는 60초에서 유의성 있게 증가되고, AB2의 경우 차이를 나타내지 않았다.

한국 활엽수림의 이산화탄소 농도의 연직구조와 저류항 (Vertical Profiles of CO2 Concentrations and CO2 Storage in Temperate Forest in Korea)

  • ;강민석;천정화;김준
    • 한국농림기상학회:학술대회논문집
    • /
    • 한국농림기상학회 2013년도 추계 학술발표논문집
    • /
    • pp.23-24
    • /
    • 2013
  • Micrometeorological fluxes measured over a tall forest in a complex terrain are difficult to interpret. $CO_2$ storage often makes significant contributions to net ecosystem exchange of $CO_2$ (NEE) in early morning and during nighttime due to calm and stable conditions. We measured the above-canopy $CO_2$ flux along with its concentration profiles at eight levels within and above the canopy to evaluate $CO_2$ storage term. Our question is whether or not the $CO_2$ storage term can be estimated accurately from a single level measurement of $CO_2$ concentration in a complex terrain. Our objectives are (1) to document vertical profiles of $CO_2$ concentration and (2) to compare the diurnal and seasonal variations of $CO_2$ storages estimated from single and multi-level $CO_2$ concentration data. Seasonally averaged Diurnal variations of $CO_2$ concentration ranged from 398 to 455 ppm near the forest floor at 0.1 m whereas they ranged from 364 to 395 ppm at 40 m in the atmosphere. The diurnal variation of vertical profiles of $CO_2$ concentration shows very interesting features with season. At all eight levels, diurnal variation of $CO_2$ concentration showed little change in winter. In spring, the diurnal variations of $CO_2$ concentration at 8 levels showed three distinct groups of layers with height: the first layer: 0.1m (near surface), second layer: 1.0 m and 4.0m (below canopy) and the third layer: 7.4m to 40.7 m (near canopy and above). In summer, these three groups of layers were further separated with larger variations whereas such distinction became smaller in fall. The diurnal variation of $CO_2$ concentration in the first three layers near surface always showed higher concentration with larger variability. Typically, $CO_2$ concentration showed peaks in early morning and in the evening. After the evening peak, $CO_2$ concentration gradually increased except for those near the surface (i.e., 0.1, 1.0 and 4.0 m) where the concentrations actually decreased. We suspect that this could be attributed to the drainage flow of $CO_2$ along the hill slope from the headwater to downstream, which is not taken into account for net ecosystem $CO_2$ exchange. In comparison to the results of other studies, the distinct and different vertical structures of $CO_2$ concentrations observed at our site may be due to complex terrain and weak turbulent mixing under calm conditions at the site. The annual mean of diurnal variation of $CO_2$ storage flux from single level ranged from -0.6 to $0.9{\mu}mol\;m^{-2}s^{-1}$ and from multi-level from -1.2 to $1.0{\mu}\;{\mu}mol\;m^{-2}s^{-1}$. When compared against the results from the multi-level concentrations, the storage flux estimated from a single-level concentration was generally adequate except for specific hours near sunrise and sunset. Further details and their implication will be discussed in the presentation.

  • PDF

지진하중을 받는 I형 곡선거더 단경간 교량의 대리모델 기반 전역 민감도 분석 (Surrogate Model-Based Global Sensitivity Analysis of an I-Shape Curved Steel Girder Bridge under Seismic Loads)

  • 전준태;손호영;주부석
    • 한국재난정보학회 논문집
    • /
    • 제19권4호
    • /
    • pp.976-983
    • /
    • 2023
  • 연구목적: 지진하중을 받는 교량 구조물의 동적 거동은 지진파의 특성 혹은 재료 및 기하학적 특성과 같은 많은 불확실성에 영향을 받는다. 하지만 모든 불확실성 인자가 교량 구조물의 동적 거동에 중요한 영향을 미치진 않는다. 영향성이 낮은 불확실성 인자까지 고려한 확률론적 내진성능 평가는 많은 계산비용이 요구되기 때문에 교량의 동적 거동에 미치는 영향을 고려하여 불확실성 인자는 식별되어야 한다. 따라서 본 연구는 I형 곡선 거더를 갖는 단경간 교량의 동적 거동에 영향을 미치는 주요 매개변수를 식별하기 위해 전역민감도 분석을 수행하였다. 연구방법: 지진파의 불확실성과 곡선 교량의 재료 및 기하학적 불확실성을 고려하여 유한요소 해석을 수행하였으며 해석결과를 기반으로 대리모델을 작성하였다. 결정계수와 같은 성능평가지료를 이용하여 대리모델을 평가하였으며 최종적으로 대리모델 기반의 전역 민감도 분석을 수행하였다. 연구결과: 지진하중을 받는 I형 곡선 거더의 응력응답에 가장 큰 영향을 미치는 불확실성 인자는 최대지반가속도(PGA), 교각의 높이(h), 강재의 항복응력(fy) 순으로 나타났다. PGA, h, fy의 주효과 민감도 지수는 각각 0.7096, 0.0839, 0.0352로 나타났으며 총 민감도 지수는 각각 0.9459, 0.1297, 0.0678로 나타났다. 결론: I형 곡선 거더의 응력응답은 입력운동의 불확실성에 대한 영향성이 지배적이며 각 불확실성 인자 사이의 교호작용에 큰 영향을 받는다. 따라서 입력운동의 개수 및 intensity measure과 같은 입력운동의 불확실성에 대한 추가적인 민감도 분석과 곡선거더의 개수 및 곡률과 같은 구조적 불확실성까지 고려한 총 민감도 분석은 필요하다.

인삼식물의 종자발육 과정에 있어서의 생리화학적 연구 (Studies on the Physiological Chemistry of Seed Development in Ginseng Seed)

  • 양희천
    • 한국작물학회지
    • /
    • 제17권
    • /
    • pp.115-133
    • /
    • 1974
  • 인삼 종자의 결실과 최아과정중에서 일어나는 물질대사의 기본적 소인을 알고저 화기형성초기로부터 개화기까지, 결실초기부터 홍숙기까지, 그리고 최아과정중 화학성분의 변화를 추구하였다. 1. 화뢰에서는 감수분열기 이전까지 신선중, 건물중, 회수화물, 질소화합물의 변동은 그리 크지 않으며 TCA가용성인, 특히 유기태인의 증가와 현저하였다. 2. 감수분열기로부터 소포자기에 이르는 기간 동안 신선중, 건물중이 급격히 증가되고 전질소량이 증가하는데 불용성 질소구분은 이 시기부터 그 량이 늘어나 단백질이 합성되는 것을 의미하고 있으며 불용성 질소가 전질소의 62∼70%를 차지하고 있다. 또한 가용성 당분이 급격하게 증가되어 환원당, 비환원당이 모두 증가하나 전분의 증가는 볼 수 없고, 전인에 대한 TCA가용성인이 85.4%, TCA불용성인이 14.6%로 화뢰성장중 각각 최고, 최소치를 나타내고 있다. 3. 화분성숙기 이후와 개화기에서 특히 건물중의 증가가 현저하고 불용성질소도 계속 증가되어 총질소의 67%에 이른다. 또한 두드러진 유기태인의 저하와 갑작스런 조전분의 증가를 볼 수 있고 무기태인량이 유기태 인량을 능가하게 된다. 4. 결실기부터 홍열기까지에 있어서는 신선중량의 90%가 결실 후 3주간에 증가하는데, 1) 전질소량은 7배로 증가되었고 성숙되어 갈수록 전질소에 대한 불용성질소의 량이 커져서 65%에서 80%이상으로 상승되고 한편 가용성질소의 비율은 35%에서 20%이하로 저하되었다. 2) 전인산량도 8배로 증가되는데 홍숙이 시작되는 시기에 최고에 이르고 이때에 전인산에 대한 TCA가용성인의 비율도 가장 커서 90%에 이른다. 유기태인도 홍숙이 시작될 때까지 29배나 증가되며 지질태인, 핵산태인, 단백태인이 모두 증가되고 있다. 3) 회수화물의 증가는 신선중의 증가와 유사한데결실한지 3주 후에 최고량에 달하고 그 후는 사실상 증가하지 않으며 가용성당도 3주 후에 최고에 달했다가 일시 감소하며 홍숙기에 약간 증가하나 먼저 수준에는 이르지 못하며 조전분은 점차 증가되어 홍숙되기 일주 전에 최고량에 달하나 전 건물량의 2.36% 밖에 되지 못한다. 회수화물중 가용성당이 차지하는 비율이 훨씬 크며 완숙기에서는 가용성당분중 약80% 이상의 비환원당으로 되어 있어 인삼 종자의 주요 회수화물을 이루고 있다. 4) 한편 완숙된 종자의 배란중에는 60% 이상의 지방을 함유하고 있어 인삼 종자의 저장물질은 단백질이나 회수화물이기 보다는 주로 지방이다. 5. 최아조작중에는 배가 11월중순의 파종기까지 4.2∼4.7mm로 발육하며 충분히 흡수하여 50∼60%에 이르고, 저장지방, 단백질, 전분이 가수분해하여 가용화되고 당분, 무기태인, 인지질, 핵산태인, 단백태인과 가용성질소의 증가를 보이고 있어 세포내용물의 전이가 일어나 발아에 필요한 물질을 축적하고 있다.

  • PDF

단위유량도와 비수갑문 단면 및 방조제 축조곡선 결정을 위한 조속계산 (Calculation of Unit Hydrograph from Discharge Curve, Determination of Sluice Dimension and Tidal Computation for Determination of the Closure curve)

  • 최귀열
    • 한국농공학회지
    • /
    • 제7권1호
    • /
    • pp.861-876
    • /
    • 1965
  • During my stay in the Netherlands, I have studied the following, primarily in relation to the Mokpo Yong-san project which had been studied by the NEDECO for a feasibility report. 1. Unit hydrograph at Naju There are many ways to make unit hydrograph, but I want explain here to make unit hydrograph from the- actual run of curve at Naju. A discharge curve made from one rain storm depends on rainfall intensity per houre After finriing hydrograph every two hours, we will get two-hour unit hydrograph to devide each ordinate of the two-hour hydrograph by the rainfall intensity. I have used one storm from June 24 to June 26, 1963, recording a rainfall intensity of average 9. 4 mm per hour for 12 hours. If several rain gage stations had already been established in the catchment area. above Naju prior to this storm, I could have gathered accurate data on rainfall intensity throughout the catchment area. As it was, I used I the automatic rain gage record of the Mokpo I moteorological station to determine the rainfall lntensity. In order. to develop the unit ~Ydrograph at Naju, I subtracted the basic flow from the total runoff flow. I also tried to keed the difference between the calculated discharge amount and the measured discharge less than 1O~ The discharge period. of an unit graph depends on the length of the catchment area. 2. Determination of sluice dimension Acoording to principles of design presently used in our country, a one-day storm with a frequency of 20 years must be discharged in 8 hours. These design criteria are not adequate, and several dams have washed out in the past years. The design of the spillway and sluice dimensions must be based on the maximun peak discharge flowing into the reservoir to avoid crop and structure damages. The total flow into the reservoir is the summation of flow described by the Mokpo hydrograph, the basic flow from all the catchment areas and the rainfall on the reservoir area. To calculate the amount of water discharged through the sluiceCper half hour), the average head during that interval must be known. This can be calculated from the known water level outside the sluiceCdetermined by the tide) and from an estimated water level inside the reservoir at the end of each time interval. The total amount of water discharged through the sluice can be calculated from this average head, the time interval and the cross-sectional area of' the sluice. From the inflow into the .reservoir and the outflow through the sluice gates I calculated the change in the volume of water stored in the reservoir at half-hour intervals. From the stored volume of water and the known storage capacity of the reservoir, I was able to calculate the water level in the reservoir. The Calculated water level in the reservoir must be the same as the estimated water level. Mean stand tide will be adequate to use for determining the sluice dimension because spring tide is worse case and neap tide is best condition for the I result of the calculatio 3. Tidal computation for determination of the closure curve. During the construction of a dam, whether by building up of a succession of horizontael layers or by building in from both sides, the velocity of the water flowinii through the closing gapwill increase, because of the gradual decrease in the cross sectional area of the gap. 1 calculated the . velocities in the closing gap during flood and ebb for the first mentioned method of construction until the cross-sectional area has been reduced to about 25% of the original area, the change in tidal movement within the reservoir being negligible. Up to that point, the increase of the velocity is more or less hyperbolic. During the closing of the last 25 % of the gap, less water can flow out of the reservoir. This causes a rise of the mean water level of the reservoir. The difference in hydraulic head is then no longer negligible and must be taken into account. When, during the course of construction. the submerged weir become a free weir the critical flow occurs. The critical flow is that point, during either ebb or flood, at which the velocity reaches a maximum. When the dam is raised further. the velocity decreases because of the decrease\ulcorner in the height of the water above the weir. The calculation of the currents and velocities for a stage in the closure of the final gap is done in the following manner; Using an average tide with a neglible daily quantity, I estimated the water level on the pustream side of. the dam (inner water level). I determined the current through the gap for each hour by multiplying the storage area by the increment of the rise in water level. The velocity at a given moment can be determined from the calcalated current in m3/sec, and the cross-sectional area at that moment. At the same time from the difference between inner water level and tidal level (outer water level) the velocity can be calculated with the formula $h= \frac{V^2}{2g}$ and must be equal to the velocity detertnined from the current. If there is a difference in velocity, a new estimate of the inner water level must be made and entire procedure should be repeated. When the higher water level is equal to or more than 2/3 times the difference between the lower water level and the crest of the dam, we speak of a "free weir." The flow over the weir is then dependent upon the higher water level and not on the difference between high and low water levels. When the weir is "submerged", that is, the higher water level is less than 2/3 times the difference between the lower water and the crest of the dam, the difference between the high and low levels being decisive. The free weir normally occurs first during ebb, and is due to. the fact that mean level in the estuary is higher than the mean level of . the tide in building dams with barges the maximum velocity in the closing gap may not be more than 3m/sec. As the maximum velocities are higher than this limit we must use other construction methods in closing the gap. This can be done by dump-cars from each side or by using a cable way.e or by using a cable way.

  • PDF

점토질 논 토양의 심층화가 토지생산성 및 유면건조에 미치는 영향 (Effects of the Development of Cracks into Deeper Zone on Productivity and Dryness of the Clayey Paddy Field)

  • 김철기
    • 한국농공학회지
    • /
    • 제15권3호
    • /
    • pp.3059-3088
    • /
    • 1973
  • 본연구(本硏究)에서는 연구(硏究)의 대상(對象)을 저습답(低濕畓)에 두기보다는 지하수위(地下水位)가 낮은 점질토(粘質土)의 건답(乾畓)에 두고 이 점질토(粘質土)논에 대(對)한 수잉전(移秧前)의 처리(處理)에 있어서 심경(深耕)을 한 것 답면(畓面)을 건조(乾燥)시켜 구열발달(龜裂發達)을 기(期)하게한 것 및 암거(暗渠)가 설치(設置)된 곳에서의 답면(畓面)을 건조(乾燥)시켜 구열발달(龜裂發達)을 기(期)하게 한 것 중에서 어떤 처리방법(處理方法)을 적용(適用)한 것이 뿌리신장(伸長)이 심층화(深層化)되여 벼의 수량(收量)을 높일 수 있고 동시(同時)에 지하배수기능(地下排水機能)이 제대로 발휘(發揮)되여 수확작업(收穫作業)에 대형기계(大型機械)를 도입(導入)하였을 때 농업기계(農業機械)의 주행성면(走行性面)에서 유리(有利)한가를 발견(發見)코저 한 것이다. 그래서 시험구처리(試驗區處理)에 있어서는 (1)이앙(移秧) 39일전(日前)에 경운(耕耘)하여 풍건(風乾)시킨 것(경운구(區)) (2) 이앙(移秧) 39일전(日前)에 경운(耕耘)하여 물로 포화(飽和)시켜 쓰린후(後) 구열(龜裂)을 발생(發生)시켜 이앙(移秧) 2일전(日前)에 15cm 깊이로 경운(耕耘)한 것(균열구(區)) (3) 이앙(移秧) 39일전(日前)에 암거설치(暗渠設置)와 동시(同時)에 경운(耕耘)하여 물로 포화(飽和)시켜 쓰린후(後) 구열(龜裂)을 발생(發生)시켜 이앙(移秧) 2일전(日前)에 15cm 깊이로 경운(耕耘)한 것(균암구(區))의 3요인(要因)에 15cm. 25cm, 35cm 깊이의 3수준(水準)으로 하고 15cm 깊이 경운구(區)를 Control구(區)로 정(定)하였는데 이에 의(依)하여 얻은 시험결과(試驗結果)는 대략(大略) 다음과 같이 요약(要約)될 수 있다. 1. 소비수량(消費數量)은 균암구(區)에 있어서는 경운구(區) 및 균열구(區)보다도 소비수량(消費水量)을 나타냈다. 따라서 유효우량은 균암구(區)에서 가장 크고 경운구(區), 균열구(區)의 순(順)으로 작은값을 나타냈고 순용수량(純用水量)에 있어서는 여전(如前)히 균암구(區), 경운구(區), 균열구(區)의 순(順)으로 작어저 균암구(區)가 가장 큰 양(量)을 나타냈다. 심도(深度)에 불구(不拘)하고 순용수량(純用水量)의 크기는 균암구(區)에서 105cm 내외(內外), 경운구(區)에서 70cm 내외(內外), 균열구(區)에서는 45cm 내외(內外)를 나타냈다. 2. 뿌리중량(重量)이 구열최대심도(龜裂最大深度)에 예민(銳敏)하게 영향(影響)을 받고 있는 경향(傾向)으로 미루어 볼 때 뿌리 발달(發達)은 답면상(畓面上)의 구열(龜裂)에 의(依)하기 보다는 구열심도(龜裂深度)에 더 큰 영향(影響)을 받는 것으로 되어 있다. 따라서 깊은구(區)일수록 뿌리중량(重量)은 커지는 경향(傾向)을 가졌고 처리간(處理間)에는 균열구(區), 균암구(區), 경운구(區) 순(順)으로 증대(增大)하는 경향(傾向)을 가졌다. 3. 초장(草丈)의 신장(伸長)에 있어서는 어느구(區)를 막론(莫論)하고 생육초기(生育初期)(분얼최성기(分얼最盛期))에는 별(別)로 차이(差異)를 발견(發見)할 수 없으나 생육중기(生育中期)(분얼종료기(分얼終了期)부터 유수형성기(幼穗形成期) 사이에서는 심도(深度)가 깊은구(區)일수록 그 성장(成長)이 떨어지고 생육후기(生育後期)(수잉기)(穗잉期)에 접어들면서 부터는 도리여 심도(深度)가 깊은구(區)가 얕은구(區)보다 더 왕성(旺盛)한 신장(伸長)을 하였다. 이것은 시험처리별(試驗處理別)로 볼 때 생육중기(生育中期) 이후(以後) 균열구(區)는 어느 다른 구(區)보다 떨어지고 균암구(區)와 경운구(區) 간(間)에는 별차이(別差異)는 없으나 균암구(區)가 여간(與干) 초장신장(草丈伸長)이 우세(優勢)한 경향(傾向)을 나타냈다. 4. 경수(數)에 있어서는 전생육기간(全生育期間)을 통(通)하여 심도(深度)가 깊은구(區)일수록 그 수(數)가 적어지는 경향(傾向)을 나타냈고 이것을 시험처별(試驗處別)로 볼 때 균열구(區)는 늘 균암구(區)와 경운구(區)보다 떨어졌으며 또 경운구(區)는 균암구(區)보다 약간(若干) 우세(優勢)한 경향(傾向)을 나타냈다. 5. 수량(收量)(조곡중)(租穀重))에 있어서는 시험처리별(試驗處理別) 각(各) 시험구(試驗區)의 수량(收量)을 Control 구(區) 15-경운구(區)와 대비(對比)할 때 35-경운구(區)에 있어서는 17%, 35-암거구(區)에 있어서는 10% 기타구(其他區)에 있어서는 모두 Control구(區)와 같거나 떨어졌다. 그리고 전체적(全體的)으로 볼 때 심도(深度)가 깊은구(區)일수록 수량(收量)은 증가(增加)하였고 경운구(龜)는 균암구(區)보다, 균암구(區)는 균열구(區)보다 수량(收量)이 높았으며 심도구(深度區)에는 1%의 유의성시험처리(有意性試驗處理)에는 5%의 유의성(有意性)이 존재(存在)하였다. 6. 조곡중(粗穀重)에 더 많은 영향(影響)을 주는 감수심(減水深)은 후기감수심(後期減水深)이며 15cm 구(區)에서는 2.7cm/day 이내(以內)에서 25cm 구(區)에서는 3.0cm/day 이내(以內)에서 35cm 구(區)에서는 3.3cm/day이내(以內)의 범위(範圍)에서 감수심(減水深)이 증대(增大)하면 조곡중(粗穀重) 증대(增大)하였고 동시(同時)에 동일감수심(同一減水深)에서는 심도(深度)가 깊은구(區) 일수록 조곡중(粗穀重)은 증대(增大)하였다. 따라서 동일감수심도(同一減水深度)가 깊은구(區)일수록 수량면(收量面)에서 유리(有利)함을 암시(暗示)하고 있다. 7. 뿌리중량(重量)에서 비례(比例)하여 조곡중(粗穀重)은 증대(增大)하였으며 벼뿌리중량(重量)이 동일(同一)할때는 심도(深度)가 깊은구(區)일수록 조곡중(粗穀重)은 증대(增大)하는 경향(傾向)을 보여주고 있다. 또 시험처리별(試驗處理別)로 볼 때는 벼뿌리 중량(重量)은 균열구(區), 균암구(區), 경운구(區)의 순(順)으로 컸고 따라서 조곡중(粗穀重)도 역시(亦是) 같은 순(順)으로 컸다. 그리고 조곡중(粗穀重)은 중간낙수기간(中間落水期間)의 최소함수비(最少含水比)와 그때의 평균지온(平均地溫)에 관계(關係)되나 함수비(含水比)가 40%이하(以下)에서는 평균지온(平均地溫)은 함수비(含水比)에 비례(比例)하여 증가(增加)하는 경향(傾向)이 있음으로 주(主)로 최소함수비(最小含水比)에 영향(影響)을 받는바가 크다. 8. 짚조곡중비(粗穀重比)는 심도(深度)가 얕은구(區)일수록 커지는 경향(傾向)을 보였고 또 벼뿌리중량(重量)에 역지수함수적(逆指數函數的)으로 증대(增大)하였다. 또 같은 심도(深度)의 구(區)에서는 15cm 구(區)를 제외(除外)하고는 짚조곡중비(粗穀重比)는 감수심(減水深)에 비례(比例)하여 증대(增大)하였다. 감수심(減水深)이 어느 한도(限度)까지 증대(增大)됨에 따라 조곡중(租穀重)이 증대(增大)하지만 동시(同時)에 짚조곡중비(粗穀重比)도 증대(增大)함을 보여주고 있다. 9. 동일토성(同一土性)에서 구열량(龜裂量)은 기상조건(氣象條件) 특(特)히 증발량(蒸發量)의 증대(增大)에 따라 증대(增大)하며 답면건조도중(畓面乾燥途中)에 강우(降雨)가 있으면 답면구열량(畓面龜裂量)은 현저(顯著)히 감소(減小)한다. 점질토(粘質土)의 구열량(龜裂量)은 대체(大體)로 함수비(含水比)가 25% 이상(以上)에서는 함량비(含量比)에 역지수적(逆指數的)으로 증가(增加)하는 경향(傾向)을 보였고 구열(龜裂)의 최대(最大) 심도(深度)는 31% 이하(以下)의 함수비(含水比)에서는 일정(一定)한 값을 유지(維持)하는 경향(傾向)이있다. 10. Cone 지수(指數)는 어느 한도(限度)까지는 구열량(龜裂量)에 비례(比例)하는 경향(傾向)이있으나 구열량(龜裂量)이 어느 한도(限度)를 넘으면 약간(若干) 구열량(龜裂量)에 역비례(逆比例)하는 경향(傾向)을 보여주고 있다. 그 한도(限度)의 함수비(含水比)는 25% 근처가 될 것이다. 11. 최종낙수후 (最終落水後)의 Cone 지수(指數)의 경시적(經時的) 증대(增大)는 생육후기(生育後期)의 감수심(減水深)에 비례(比例)하는 경향(傾向)을 보였고 동일감수심(同一減水深)에서 균암구(區)는 다른 두 구(區)보다 큰Cone지수(指數)를 나타냈고 경운구(區)는 심도(深度)가 깊은구(區)일수록 균열구(區)보다 작은 Cone 지수(指數)를 나타냈는데 특(特)히 35-경운구(區) Cone의 지수(指數)는 현저(顯著)하게 작은 값을 나타냈다. 12. 최종낙수후(最終落水後)의 답면건조(畓面乾燥)에 있어서는 함수비(含水比)의 감소상황(減少狀況) 및 Cone 지수(指數)의 증대상황(增大狀況)에 비추어 볼 때 시험처리별(試驗處理別)로는 균암구(區)가 다른 두 구(區)보다 밟르고 경운구(區)는 가장 늦어지고 심도(深度)가 깊은 구(區)에서는 더욱 늦어지고 있다. 농업기계(農業 機械)의 주행(走行)에 지장(支障)을 가져오지 않을 정도(程度)의 Cone 지수(指數)($2.5kg/cm^2$)로 답면건조(畓面乾燥)를 시키자면 최종낙수시기(最終落水時期)를 잡는 시기(時期) 및 낙수기간(落水期間)동안의 강우(降雨)의 유무(有無)에 따라 다르게지만 강우(降雨)가 전혀 없다면 누계계기증발량(累計計器蒸發量)을 기준(基準)으로 잡을 때 균암구(區)에서는 누계계기증발량(累計計器蒸發量)으로 약(約) 44mm가 필요(必要)하고 기타구(其他區)에서는 50mm 이상(以上)이 필요(必要)하게 됨으로 균암구(區)에서의 답면건조진행(畓面乾燥進行)은 대체(大體)로 경운구(區), 균열구(區)보다 2일이상(日以上)이 빠르며 35-경운구(區)와 비교(比較)하면 5일(日) 이상(以上)이나 빠르게 될 것이다.

  • PDF