• Title/Summary/Keyword: Peak/Valley Filtering

Search Result 2, Processing Time 0.015 seconds

Development of a Probabilistic Approach to Predict Motion Characteristics of a Ship under Wind Loads (풍하중을 고려한 확률론적 운동특성 평가기법 개발에 관한 연구)

  • Sang-Eui Lee
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.315-323
    • /
    • 2023
  • Marine accidents due to loss of stability of small ships have continued to increase over the past decade. In particular, since sudden winds have been pointed out as main causes of most small ship accidents, safety measures have been established to prevent them. In this regard, to prevent accidents caused by sudden winds, a systematic analysis technique is required. The aim of the present study was to develop a probabilistic approach to estimate extreme value and evaluate effects of wind on motion characteristics of ships. The present study included studies of motion analysis, extraction of extreme values, and motion characteristics. A series analysis was conducted for three conditions: wave only, wave with uniform wind speed, and wave with the NPD wind model. Hysteresis filtering and Peak-Valley filtering techniques were applied to time-domain motion analysis results for extreme value extraction. Using extracted extreme values, the goodness of fit test was performed on four distribution functions to select the optimal distribution-function that best expressed extreme values. Motion characteristics of a fishing boat were evaluated for three periodic motion conditions (Heave, Roll, and Pitch) and results were compared. Numerical analysis was performed using a commercial solver, ANSYS-AQWA.

Establishment of Fatigue Life Evaluation and Management System for District Beating Pipes Considering Operating Temperature Transition Data (운전이력을 고려한 지역난방 열배관의 피로수명 평가 및 관리 체계 구축)

  • Chang Yoon-Suk;Jung Sung-Wook;Kim Hyeong-Keun;Choi Jae-Boong;Kim Sang-Ho;Kim Youn-Hong;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1235-1242
    • /
    • 2005
  • A district heating(DH) system supplies environmentally-friend heat and is appropriate for reduction of energy consumption and/or air pollutions. The DH transmission pipe, composed of supply and return pipes, has been used to transmit the heat and prevent heat loss during transportation. The two types of pipes are operated at a temperature of $75\~115^{\circ}C\;and\;40\~65^{\circ}C$, respectively, with an operating pressure of less than 1.568MPa. The objectives of this paper are to systematize data processing of transition temperature and investigate its effects on fatigue life of DH pipes. For the sake of this, about 5 millions temperature data were measured during one year at ten locations, and then available fatigue lift estimation schemes were examined and applied to quantify the specific thermal fatigue life of each pipe. As a result, a relational database management system as well as reliable fatigue lift evaluation procedures is established for Korean DH pipes. Also, since the prototypal evaluation results satisfied both cycle-based and stress-based fatigue criteria, those can be used as useful information in the future fer optimal design, operation and energy saving via setting of efficient condition and stabilization of water temperature.