• Title/Summary/Keyword: Pd catalysts

Search Result 187, Processing Time 0.024 seconds

Comparison of the Characteristics of Pd-Ir-Y Ternary Alloy Catalyst Particles and Oxygen Reduction Activity According to Yttrium Contents (이트륨 함량에 따른 Pd-Ir-Y 3원계 합금 촉매 입자의 특성과 산소 환원 반응의 활성 비교)

  • KIM, DO HYUNG;LEE, EUNAE;PAK, CHANHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.3
    • /
    • pp.260-266
    • /
    • 2018
  • To enhance catalyst activity of the palladium (Pd) towards oxygen reduction reaction (ORR), iridium (Ir) and yttrium (Y) were alloyed by polyol method. Due to the low reduction potential of Y, it is hard to reduce Y ion completely by polyol method. In XPS spectra, the binding energy of the Pd is shifted to a lower value, which indicates the d-electron of Pd is filled by the electron from the Y. And other phases of Y are observed by the XPS. Among the catalysts, the $Pd_4IrY_{0.1}/C$ showed the best activity towards ORR, which indicates the metallic Y is effective for improving the catalytic activity. Thus, for further enhancing ORR activity, the novel method for complete reduction of Y is needed.

Effect of Acetate Promotor on the Pd-Au/SiO2-catalyzed Synthesis of Vinyl Acetate from the Reaction of Ethylene with Acetic Acid (Pd-Au/SiO2 촉매에 의한 에틸렌과 아세트산으로부터 비닐 아세트산염의 생성반응에 대한 아세트산염의 촉진 효과)

  • Atashi, Hossein;Motahari, Kazem;Tabrizi, Farshad Farshchi;Sarkari, Majid;Fazlollahi, Farhad
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.92-97
    • /
    • 2011
  • The effect of Group I alkali acetate promoters on vinyl acetate (VA) synthesis was evaluated. Catalyst product selectivity and ethylene conversion are compared to the unpromoted catalyst in the fixed-bed reactor with oxidation reaction of ethylene and acetic acid in gaseous phase over Pd-Au/$SiO_2$ catalyst. It was found that: a) the promoters were stabilized on the catalyst surface, b) common effect for the alkali promoted Pd-Au catalysts increaseed in product selectivity and ethylene conversion compared to unpromoted catalyst (these effects increase from top to the bottom of Group I). These promoting effect is due to the common-ion effect of acetate, present in the reaction, resulting in an increase in the activity of the catalyst. In addition a complementary theory for the effect of Au in the structure of the catalyst is proposed the imposition of distribution of palladium particles through decreasing the particle's diameter.

A Complete, Reductive Depolymerization of Concentrated Sulfuric Acid Hydrolysis Lignin into a High Calorific Bio-oil using Supercritical Ethanol

  • Riaz, Asim;Kim, Jaehoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.447-452
    • /
    • 2016
  • It is imperative to develop an effective pathway to depolymerize lignin into liquid fuel that can be used as a bioheavy oil. Lignin can be converted into liquid products either by a solvent-free thermal cracking in the absence air, or thermo-chemical degradation in the presence of suitable solvents and chemicals. Here we show that the solvent-assisted liquefaction has produced promising results in the presence of metal-based catalysts. The supercritical ethanol is an efficient liquefaction solvent, which not only provides better solubility to lignin, but also scavenges the intermediate species. The concentrated sulfuric acid hydrolysis lignin (CSAHL) was completely liquefied in the presence of solid catalysts (Ni, Pd and Ru) with no char formation. The effective deoxy-liquefaction nature associated with scEtOH with aid hydrodeoxygenation catalysts, resulted in significant reduction in oxygen-to-carbon (O/C) molar ratio up to 61%. The decrease in oxygen content and increase in carbon and hydrogen contents increased the calorific value bio-oil, with higher heating value (HHV) of $34.6MJ{\cdot}Kg^{-1}$. The overall process is energetically efficient with 129.8% energy recovery (ER) and 70.8% energy efficiency (EE). The GC-TOF/MS analysis of bio-oil shows that the bio-oil mainly consists of monomeric species such as phenols, esters, furans, alcohols, and traces of aliphatic hydrocarbons. The bio-oil produced has better flow properties, low molecular weight, and high aromaticity.

Effects of metal catalysts on the characteristics of NO sensor using ZnO thin film as sensing material (금속 촉매가 ZnO 박막을 감지물질로 이용한 NO 센서의 특성에 미치는 영향)

  • Chung, Gwiy-Sang;Jeong, Jae-Min
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.58-61
    • /
    • 2010
  • This paper describes the fabrication and characteristics of NO sensor using ZnO thin film by RF magnetron sputter system. The sensitivity, working temperature, and response time of sputtered pure ZnO thin film and added catalysts such as Pt, Pd, Al, Ti on those films were measured and analyzed. The sensitivity of pure ZnO thin film at working temperature of $300^{\circ}C$ is 0.875 in NO gas concentration of 0.046 ppm. At same volume of the gas in chamber, measuring sensitivity of 1.87 at $250^{\circ}C$ was the case of Pt/ZnO thin film. The ZnO thin films added with catalyst materials were showed higher sensitivity, lower working temperature and faster adsorption characteristics to NO gas than pure ZnO thin film.

Recent Research Progress on the Atomic Layer Deposition of Noble Metal Catalysts for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지용 촉매 소재 개발을 위한 원자층증착법 연구 동향)

  • Han, Jeong Hwan
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • It is necessary to fabricate uniformly dispersed nanoscale catalyst materials with high activity and long-term stability for polymer electrolyte membrane fuel cells with excellent electrochemical characteristics of the oxygen reduction reaction and hydrogen oxidation reaction. Platinum is known as the best noble metal catalyst for polymer electrolyte membrane fuel cells because of its excellent catalytic activity. However, given that Pt is expensive, considerable efforts have been made to reduce the amount of Pt loading for both anode and cathode catalysts. Meanwhile, the atomic layer deposition (ALD) method shows excellent uniformity and precise particle size controllability over the three-dimensional structure. The research progress on noble metal ALD, such as Pt, Ru, Pd, and various metal alloys, is presented in this review. ALD technology enables the development of polymer electrolyte membrane fuel cells with excellent reactivity and durability.

Oligomerizations and Polymerizations of Olefins by Various Late Transition Metal Catalysts

  • Bahuleyan Bijal Kottukkal;Lee Kyoung-Ju;Son Gi-Wan;Choi Jae-Ho;Chandran Deepak;Abraham Sinoj;Ha Chang-Sik;Kim Il
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.155-155
    • /
    • 2006
  • The most commercially and academically advanced catalysts of late transition metals are diimine complexes based on Pd(II)/Ni(II) and bis(imino)pyridyl complexes based on Fe(II)/Co(II). It is well known that the former systems yield branched polyethylenes and the latter linear PEs. In this presentation, effect of extremely bulky ligands with electron withdrawing/donating substituents at a remote position from Ni(II) metal center and of using multi-nuclear homo or hetero multi-metal on the ethylene polymerization is to be paged.

  • PDF

Selective Oxidation of Hydrogen Over Palladium Catalysts in the Presence of Carbon Monoxide: Effect of Supports (Pd 촉매상에서 일산화탄소 존재 하 수소의 선택적 산화반응: 담체 효과)

  • Kim, Eun-Jeong;Kang, Dong-Chang;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.121-129
    • /
    • 2017
  • Pd based catalysts were prepared by impregnating palladium precursor using incipient wetness method on $TiO_2$, $Al_2O_3$, $ZrO_2$, and $SiO_2$ and were applied for the selective oxidation of $H_2$ in the presence of CO. Their physicochemical properties were studied by X-ray diffraction (XRD), $N_2$-sorption, temperature programmed desorption of CO (CO-TPD) and (CO+$H_2O$)-TPD, temperature programmed reduction of CO (CO-TPR) and XPS a. The results of CO- and (CO+$H_2O$)-TPD showed the correlation between peak temperature of TPD and catalytic activities for $H_2$ and CO conversion. The $Pd/ZrO_2$ catalyst exhibited the highest conversion of $H_2$. The addition of $H_2O$ vapor promotes the conversion of $H_2$ and CO by inducing easy desorption of CO and $H_2$ in the competitive adsorption of $H_2O$, CO and $H_2$.

A Study on the Reduction of Cold Start Hydrocarbon from Gasoline Engines Using Hydrocarbon Adsorbers

  • Choi, Byung-Chul;Lee, Nam-Seog;Son, Geon-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.699-703
    • /
    • 2000
  • Experiments were carried out to investigate the characteristics of the hydrocarbon (HC) emissions and to reduce cold start hydrocarbons in gasoline engines. An HC adsorber was, used and it coated was by Pd/Rh catalyst with zeolite on a honeycomb monolith. The HCs were efficiently trapped at temperatures below $100^{\circ}C by physical adsorption. After adsorption, they were reduced gradually by the catalytic oxidation of Pd/Rh catalysts as the adsorber temperature increased above $100^{\circ}C. Increasing amounts of methane, ethylene and n-butane were emitted as the fuel-air mixture became richer and the engine speed decreased. As the temperature of adsorber increased, high-number carbons into low-number carbons. Thus, the C4 concentration decreased significantly during the first 30 seconds, and the C2 concentration increased continuously.

  • PDF

Emission characteristics of Natural Gas Fueled Vehicl and its Purification Technologies (천연가스 자동차의 Emission 배출특성 및 저감법)

  • 최병철;이지연;손건석;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 1997
  • Experiments have been conducted to investigate emission characteristics of compressed natural gas fueled vehicle(CNGV) by the FTP 75 mode test. Its purification technologies were also investigated. It was found that CNGV was operated on the rich A/F condition by comparison with gasoline vehicle. The Pd catalyst was higher in methane purification performance than Pt and Pd/Pt/Rh catalysts. Up to 60% portion of the accumulative HC emissions(that contains above 80% methane) form CNGV occurs during the first phase of the FTP 75 mode. CO that is exhausted at rich conditions of the air-fuel ratio more than lean conditions should be used for the catalytic reduction of NOX, because the methane is not the effective reduction for NOX in the CNGV with 3-way catalyst system.

  • PDF

Catalytic combustion of methane over bi and tri noble metallic alumina catalysts (이원 및 삼원 귀금속 알루미나 촉매를 이용한 메탄의 촉매 산화)

  • Jang, Hyun-Tae;Lee, Ji-Yun;Bhagiyalakshmi, Margandan;Cha, Wang-Seong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.894-897
    • /
    • 2009
  • $\gamma-Al_2O_3$, $TiO_2$, ZrO에 Pt, Pd, Rh, Ru의 귀금속촉매를 분산하였으며, 촉매 분산은 과잉용액함침법으로 제조하였다. 저온에서 높은 산화능을 지닌 최소화된 귀금속의 함침량을 도출하기 위하여 연구를 수행하였다. 귀금속 촉매의 조성에 대한 영향을 도출하기 위하여 Rh, Pt, Pd, Ru에 대하여 조성과 함침량에 대하여 연구를 수행하였다. 충전층 반응기 및 모노리스 반응기를 이용한 촉매산화반응 실험결과 50% 전환온도 및 90% 전환온도를 측정한 결과 최적의 조성은 Pt-Rh /$Al_2O_3$ 촉매로 판명되었다.

  • PDF