• Title/Summary/Keyword: Pd activation

Search Result 262, Processing Time 0.02 seconds

Involvement of MAPK activation in chemokine or COX-2 productions by Toxoplasma gondii

  • Kim Ji-Young;Ahn Myoung-Hee;Song Hyun-Ouk;Choi Jong-Hak;Ryu Jae-Sook;Min Duk-Young;Cho Myung-Hwan
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.3
    • /
    • pp.197-207
    • /
    • 2006
  • This experiment focused on MAPK activation in host cell invasion and replication of T. gondii, as well as the expression of CC chemokines, MCP-1 and $MIP-1\alpha$, and enzyme, COX-2/prostaglandin $E_2(PGE_2)$ in infected cells via western blot, $[^3H]-uracil$ incorporation assay, ELISA and RT-PCR. The phosphorylation of ERK1/2 and p38 in infected HeLa cells was detected at 1 hr and/or 6 hr postinfection (PI). Tachyzoite proliferation was reduced by p38 or JNK MAPK inhibitors. MCP-1 secretion was enhanced in infected peritoneal macrophages at 6 hr PI. $MIP-1\alpha$ mRNA was increased in macrophages at 18 hr PI. MCP-1 and $MIP-1\alpha$ were reduced after treatment with inhibitors of ERK1/2 and JNK MAPKs. COX-2 mRNA gradually increased in infected RAW 264.7 cells and the secretion of COX-2 peaked at 6 hr PI. The inhibitor of JNK suppressed COX-2 expression. $PGE_2$ from infected RAW 264.7 cells was increased and synthesis was suppressed by PD98059, SB203580, and SP600125. In this study, the activation of p38, JNK and/or ERK1/2 MAPKs occurred during the invasion and proliferation of T. gondii tachyzoites in HeLa cells. Also, increased secretion and expression of MCP-1, $MIP-1\alpha$, COX-2 and $PGE_2$ were detected in infected macrophages, and appeared to occur via MAPK signaling pathways.

Cyclic Mechanical Stretch Stimulates the Proliferation of C2C12 Myoblasts and Inhibits Their Differentiation via Prolonged Activation of p38 MAPK

  • Kook, Sung-Ho;Lee, Hyun-Jeong;Chung, Wan-Tae;Hwang, In-Ho;Lee, Seung-Ah;Kim, Beom-Soo;Lee, Jeong-Chae
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.479-486
    • /
    • 2008
  • Mitogen-activated protein kinases (MAPKs) play an indispensable role in activation of the myogenic program, which is responsive to mechanical stimulation. Although there is accumulating evidence of mechanical force-mediated cellular responses, the role of MAPK in regulating the myogenic process in myoblasts exposed to cyclic stretch is unclear. Cyclic stretch induced the proliferation of C2C12 myoblasts and inhibited their differentiation into myotubes. In particular, it induced persistent phosphorylation of p38 kinase, and decreased the level of phosphorylation of extracellular-signal regulated kinase (ERK). Partial inhibition of p38 phosphorylation increased cellular levels of MyoD and p-ERK in stretched C2C12 cells, along with increased myotube formation. Treatment with $10{\mu}M$ PD98059 prevented myogenin expression in response to a low dose of SB203580 ($3{\mu}M$) in the stretched cells, suggesting that adequate ERK activation is also needed to allow the cells to differentiate into myotubes. These results suggest that cyclic stretch inhibits the myogenic differentiation of C2C12 cells by activating p38-mediated signaling and inhibiting ERK phosphorylation. We conclude that p38 kinase, not ERK, is the upstream signal transducer regulating cellular responses to mechanical stretch in skeletal muscle cells.

Effect of Korea Red Ginseng Extract on PC12 Cell Death Induced by Serum Deprivation (홍삼 수용성 추출물이 PC12 세포사멸에 미치는 영향)

  • Lee, Sang-Hyun;Yun, Young-Gab
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.2
    • /
    • pp.103-112
    • /
    • 2009
  • Objectives : This study was to evaluate the pharmacological effect of Korea Red Ginseng aqueous extract (KRGE) on serum-deprived apoptosis of neuronal-like pheochromocytoma PC12 cells and to investigate its underlying action mechanism. Methods : KRGE was prepared by extracting Korea Red Ginseng with hot water and concentrating using a vacuum evaporator. Cell viability was determined after incubation of cells with KRGE or chemical inhibitor in serum-deprived medium for 60 h by counting intact nuclei following lysing of the cell membrane. Caspase activities were measured using chromogenic substrates and signal-associated protein phosphorylation and cytochrome c release were determined by Western blot analyses using their specific antibodies. Results : Serum deprivation induced PC12 cell death, which was accompanied by typical morphological features of apoptotic cell, such as nuclear fragmentation, caspase-3 activation, and cytochrome c release. This apoptotic cell death was significantly inhibited by KRGE and caspase-3 inhibitor, but not by the addition of NMA, ODQ, and PD98059. KRGE promoted phosphorylation of Akt and Bad, and this phosphorylation was inhibited by the PI3K inhibitor LY92004. In addition, this inhibitor also reversed KRGE-mediated protection of PC 12 cells from serum deprivation. These results suggested that KRGE protects PC12 cells from serum deprivation-induced apoptosis through the activation of PI3K/Akt-dependent Bad phosphorylation and cytochrome c release, resulting in caspase-3 activation. Conclusions : KRGE should be considered as a potential therapeutic drug for brain diseases including stroke induced by apoptosis of neuronal cells.

Anti-Cancer Activity of the Flower Bud of Sophora japonica L. through Upregulating Activating Transcription Factor 3 in Human Colorectal Cancer Cells

  • Lee, Jin Wook;Park, Gwang Hun;Eo, Hyun Ji;Song, Hun Min;Kim, Mi Kyoung;Kwon, Min Ji;Koo, Jin Suk;Lee, Jeong Rak;Lee, Man Hyo;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.28 no.3
    • /
    • pp.297-304
    • /
    • 2015
  • The flower buds of Sophora japonica L (SF), as a well-known traditional Chinese medicinal herb, have been used to treat bleeding-related disorders such as hematochezia, hemorrhoidal bleeding, dysfunctional uterine bleeding, and diarrhea. However, no specific anti-cancer effect and its molecular mechanism of SF have been described. Thus, we performed in vitro study to investigate if treatment of SF affects activating transcription factor 3 (ATF3) expression and ATF3-mediated apoptosis in human colorectal cancer cells. The effects of SF on cell viability and apoptosis were measured by MTT assay and Western blot analysis against cleaved poly (ADP-ribose) polymerase (PARP). ATF3 activation induced by SF was evaluated using Western blot analysis, RT-PCR and ATF3 promoter assay. SF treatment caused decrease of cell viability and increase of apoptosis in a dose-dependent manner in HCT116 and SW480 cells. Exposure of SF activated the levels of ATF3 protein and mRNA via transcriptional regulation in HCT116 and SW480 cells. Inhibition of extracellular signal-regulated kinases (ERK) 1/2 by PD98059 and p38 by SB203580 attenuated SF-induced ATF3 expression and transcriptional activation. Ectopic ATF3 overexpression accelerated SF-induced cleavage of PARP. These findings suggest that SF-mediated apoptosis may be the result of ATF3 expression through ERK1/2 and p38-mediated transcriptional activation.

Changes in Mitogen-activated Protein Kinase Activities During Acidification-induced Apoptosis in CHO Cells

  • Kim, Jin-Young;Jeong, Dae-Won;Roh, Sang-Ho;Min, Byung-Moo
    • International Journal of Oral Biology
    • /
    • v.30 no.3
    • /
    • pp.85-90
    • /
    • 2005
  • Homeostatic pH is very important for various cellular processes, including metabolism, survival, and death. An imbalanced-pH might induce cellular acidosis, which is involved in many abnormal events such as apoptosis and malignancy. One of several factors contributing to the onset of metabolic acidosis is the production of lactate and protons by lactate dehydrogenase (LDH) in anaerobic glycolysis. LDH is an important enzyme that catalyzes the reversible conversion of pyruvate to lactate. This study sought to examine whether decreases in extracellular pH induce apoptosis of CHO cells, and to elucidate the role of mitogen-activated protein kinases (MAPKs) in acidification-induced apoptosis. To test apoptotic signaling by acidification we used CHO dhfr cells that were sensitive to acidification, and CHO/anti-LDH cells that are resistant to acidification-induced apoptosis and have reduced LDH activity by stable LDH antisense mRNA expression. In the present study, cellular lactic acid-induced acidification and the role of MAPKs signaling in acidification-induced apoptosis were investigated. Acidification, which is caused by $HCO{_3}^-$-free conditions, induced apoptosis and MAPKs (ERK, JNK, and p38) activation. However, MAPKs were slightly activated in acidic conditions in the CHO/anti-LDH cells, indicating that lactic acid-induced acidification induces activation of MAPKs. Treatment with a p38 inhibitor, PD169316, increased acidification-induced apoptosis but apoptosis was not affected by inhibitors for ERK (U0126) or JNK (SP600125). Thus, these data support the hypothesis that activation of the p38 MAPK during acidification-induced apoptosis contributes to cell survival.

Nerve Growth Factor Activates Brain-derived Neurotrophic Factor Promoter IV via Extracellular Signal-regulated Protein Kinase 1/2 in PC12 Cells

  • Park, So Yun;Lee, Ji Yun;Choi, Jun Young;Park, Mae Ja;Kim, Dong Sun
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.237-243
    • /
    • 2006
  • Brain-derived neurotrophic factor (BDNF) is a neuromodulator of nociceptive responses in the dorsal root ganglia (DRG) and spinal cord. BDNF synthesis increases in response to nerve growth factor (NGF) in trkA-expressing small and medium-sized DRG neurons after inflammation. Previously we demonstrated differential activation of multiple BDNF promoters in the DRG following peripheral nerve injury and inflammation. Using reporter constructs containing individual promoter regions, we investigated the effect of NGF on the multiple BDNF promoters, and the signaling pathway by which NGF activates these promoters in PC12 cells. Although all the promoters were activated 2.4-7.1-fold by NGF treatment, promoter IV gave the greatest induction. The p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, phosphatidylinositol 3-kinase (PI-3K) inhibitor, LY294003, protein kinase A (PKA) inhibitor, H89, and protein kinase C (PKC) inhibitor, chelerythrine, had no effect on activation of promoter IV by NGF. However, activation was completely abolished by the MAPK kinase (MEK) inhibitors, U0126 and PD98059. In addition, these inhibitors blocked NGF-induced phosphorylation of extracellular signal-regulated protein kinase (ERK) 1/2. Taken together, these results suggest that the ERK1/2 pathway activates BDNF promoter IV in response to NGF independently of NGF-activated signaling pathways involving PKA and PKC.

Extracellular Signal-regulated Kinase (ERK) is Required for Water Extract of Nardostachys chinersis-Induced Differentiation in HL-60 Cells

  • Yoon, Sang-Hak;Ju, Sung-Min;Kim, Nam-Su;Park, Sung-Cheol;Park, Jin-Young;Kim, Sung-Hoon;Song, Yung-Sun;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1315-1320
    • /
    • 2006
  • The root and rhizomes of Nardostachys chinensis belonging to the family Valerianaceae has been used for medicinal therapy in Korean traditional medicine. The parts have been especially used to elicit stomachic and sedative effects. Our previous studies reported that the water extract of N. chinensis has induced granulocytic differentiation inhuman promyelocytic leukemia (HL-60) cells. The Mitogen-activated protein kinases (MAPKs) are serine/threonine kinases involved in the regulation of various cellular responses, such as cell proliferation, differentiation and apoptosis. In this study, we investigated the signaling pathways on the HL-60 cell differentiation induced by N. chinensis. Activation of extracellular signal-regulated kinase (ERK) increased time-dependently in differentiation of HL-60 cells induced by N. chinersis. Activation of p38 increased slightly at 24 h after N. chinensis treatment, but activation of c-jun N-terminal kinase (JNK) was unaffected. Inhibitor of ERK (PD98059) significantly reduced NBT reduction activity induced by N. chinensis in HL-60 cells. In contrast, p38 inhibitor (SB203580) did not inhibit the cell differentiation. These results indicated that activaiton of ERK may De involved in HL-60 cell differentiation induced by N. chinensis.

Isopsoralen Induces Differentiation of Prechondrogenic ATDC5 Cells via Activation of MAP Kinases and BMP-2 Signaling Pathways

  • Li, Liang;Eun, Jae-Soon;Nepal, Manoj;Ryu, Jae-Ha;Cho, Hyoung-Kwon;Choi, Bo-Yun;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.299-305
    • /
    • 2012
  • Endochondral bone formation is the process by which mesenchymal cells condense to become chondrocytes, which ultimately form new bone. The process of chondrogenic differentiation and hypertrophy is critical for bone formation and as such is regulated by many factors. In this study, we aimed to indentify novel factors that regulate chondrogenesis. We investigated the possible role of isopsoralen in induction of chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Isopsoralen treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Further, ATDC5 cells treated with isopsoralen were stained more intensely with Alcian blue than control cells, suggesting that isopsoralen increases the synthesis of matrix proteoglycans. Similarly, isopsoralen markedly induced the activation of alkaline phosphatase activity compared with control cells. Isopsoralen enhanced the expressions of chondrogenic marker genes such as collagen II, collagen X, OCN, Smad4 and Sox9 in a time-dependent manner. Furthermore, isopsoralen induced the activation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase, but not that of c-jun N-terminal kinase (JNK). Isopsoralen significantly enhanced the protein expression of BMP-2 in a time-dependent manner. PD98059 and SB 203580, inhibitors of ERK and p38 MAPK, respectively, decreased the number of stained cells treated with isopsoralen. Taken together, these results suggest that isopsoralen mediates a chondromodulating effect by BMP-2 or MAPK signaling pathways, and is therefore a possible therapeutic agent for bone growth disorders.

Carbon monoxide activation of delayed rectifier potassium currents of human cardiac fibroblasts through diverse pathways

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.25-36
    • /
    • 2022
  • To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3-induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.

NLRC4 Inflammasome-Mediated Regulation of Eosinophilic Functions

  • Ilgin Akkaya;Ece Oylumlu;Irem Ozel;Goksu Uzel;Lubeyne Durmus;Ceren Ciraci
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.42.1-42.20
    • /
    • 2021
  • Eosinophils play critical roles in the maintenance of homeostasis in innate and adaptive immunity. Although primarily known for their roles in parasitic infections and the development of Th2 cell responses, eosinophils also play complex roles in other immune responses ranging from anti-inflammation to defense against viral and bacterial infections. However, the contributions of pattern recognition receptors in general, and NOD-like receptors (NLRs) in particular, to eosinophil involvement in these immune responses remain relatively underappreciated. Our in vivo studies demonstrated that NLRC4 deficient mice had a decreased number of eosinophils and impaired Th2 responses after induction of an allergic airway disease model. Our in vitro data, utilizing human eosinophilic EoL-1 cells, suggested that TLR2 induction markedly induced pro-inflammatory responses and inflammasome forming NLRC4 and NLRP3. Moreover, activation by their specific ligands resulted in caspase-1 cleavage and mature IL-1β secretion. Interestingly, Th2 responses such as secretion of IL-5 and IL-13 decreased after transfection of EoL-1 cells with short interfering RNAs targeting human NLRC4. Specific induction of NLRC4 with PAM3CSK4 and flagellin upregulated the expression of IL-5 receptor and expression of Fc epsilon receptors (FcεR1α, FcεR2). Strikingly, activation of the NLRC4 inflammasome also promoted expression of the costimulatory receptor CD80 as well as expression of immunoregulatory receptors PD-L1 and Siglec-8. Concomitant with NLRC4 upregulation, we found an increase in expression and activation of matrix metalloproteinase (MMP)-9, but not MMP-2. Collectively, our results present new potential roles of NLRC4 in mediating a variety of eosinopilic functions.