• Title/Summary/Keyword: PbIn alloy

Search Result 184, Processing Time 0.031 seconds

Preparation of Ultrafine Au-Pb Particles by Gas-evaporation Technique

  • Ohno, Takehisa;Funaguchi, Hironori
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.158-159
    • /
    • 2006
  • Ultrafine Au-Pb particles prepared by two method, (1) simultaneous evaporation of Au and Pb in inert gas and (2) subsequent vapor condensation of Pb in a differentially evacuated tube onto flying Au nanoparticles prepared by gasevaporation technique, were observed by electron microscopy. In the method (1), the particles that grew at the region where the two smoke masses converged, consisted of alloy phases. In the method (2), the particles consisted of two or three phases of Au, $Au_2Pb$, $AuPb_2$ and Pb phases in turn from the inner part, Pb-rich particles being composed of only two phases of $AuPb_2$ and Pb.

  • PDF

SUSCEPTIBILITY OF ALLOY 690 TO STRESS CORROSION CRACKING IN CAUSTIC AQUEOUS SOLUTIONS

  • Kim, Dong-Jin;Kim, Hong Pyo;Hwang, Seong Sik
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • Stress corrosion cracking (SCC) behaviors of Alloy 690 were studied in lead-containing aqueous alkaline solutions using the slow strain rate tension (SSRT) tests in 0.1M and 2.5M NaOH with and without PbO at $315^{\circ}C$. The side and fracture surfaces of the alloy were then examined using scanning electron microscopy after the SSRT test. Microstructure and composition of the surface oxide layer were analyzed by using a field emission transmission electron microscopy, equipped with an energy dispersive X-ray spectroscopy. Even though Alloy 690 was almost immune to SCC in 0.1M NaOH solution, irrespective of PbO addition, the SCC resistance of Alloy 690 decreased in a 2.5M NaOH solution and further decreased by the addition of PbO. Based on thermodynamic stability and solubility of oxide, high Cr of 30wt% in the Alloy 690 is favorable to SCC in mild alkaline and acidic solutions whereas the SCC resistance of high Cr Alloy 690 is weakened drastically in the strong alkaline solution where the oxide is not stable any longer and solubility is too high to form a passive oxide locally.

Effect of Phosphoric Acid on the Electronic and Diffusion Properties of the Anodic Passive Layer Formed on Pb-1.7%Sb Grid of Lead-acid Batteries

  • El-Rahman, H.A. Abd;Salih, S.A.;El-Wahab, A.M. Abd
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.76-84
    • /
    • 2011
  • Potentiostatic oxidation of Pb-1.7%Sb alloy used in the manufacture of grids of lead-acid batteries over the potential range from -1.0V to 2.3V in 5M $H_2SO_4$ in the absence and the presence of 0.4M $H_3PO_4$ and the self-discharge characteristics of the oxide layer formed is studied by electrochemical impedance spectroscopy (EIS). Depending on the potential value, sharp variations in resistance and capacitance of the alloy are recorded during the oxidation and they can be used for identification of the various substances involved in passive layer. Addition of $H_3PO_4$ is found to deteriorate the insulating properties of the passive layer by the retardation of the formation of $PbSO_4$. $H_3PO_4$ completely inhibits the current and impedance fluctuations recorded in $H_3PO_4$-free solutions in the potential range 0.5 V-1.7 V. These fluctuations are attributed to the occurrence of competitive redox processes that involve the formation of $PbSO_4$, $PbOSO_4$, PbO and $PbO_2$ and the repeated formation and breakdown of the passive layer. Self-discharge experiments indicate that the amount of $PbO_2$ formed in the presence of $H_3PO_4$ is lesser than in the $H_3PO_4$-free solutions. The start of transformation of $PbSO_4$ into $PbO_2$ is greatly shortened. $H_3PO_4$ facilitates the diffusion process of soluble species through the passive layer ($PbSO_4$ and basic $PbSO_4$) but impedes the diffusion process through $PbO_2$.

Fabrication and Microstructures of Al-Pb Alloy in the Ultrasonic Vibration (초음파진동 조사장 내에서 Al-Pb계 합금의 제조 및 조직)

  • Park, Hun-Berm
    • Journal of Korea Foundry Society
    • /
    • v.22 no.5
    • /
    • pp.238-244
    • /
    • 2002
  • Water and oil were completely synthesised with ultrasonic vibration energy irradiation. Pure Pb were added into Al melt during irradiated the ultrasonic vibration energy in 750. And the ultrasonic vibration energy was applied to Al-Pb melt to enhance the miscibility. Microstructural analysis, thermal analysis and X-ray diffraction analysis were carried out to evaluate the effect of the ultrasonic vibration energy on the castability and microstructural reliability. (1) Using the ultrasonic vibration energy irradiation, the complete mixing of water and oil was obtained. (2) The microstructure was refined by the application of ultrasonic vibration energy in Al-Pb alloys. (3) Relatively large Pb particles, $5{\mu}m$ were most distributed alone the grain boundaries with fine Pb particles evenly distributed in the matrix. (4) The solubility of Ph in Al-Pb alloys was increases up to 5% with the application of ultrasonic vibration energy.

The Supplement of Sn/Cu, Plating Solution Affects in Plating Skim Quality of the Plating Product (Sn/Cu 도금액의 보충이 도금제품의 도금피막특성에 미치는 영향)

  • Jeon, Taeg-Jong;Ko, Jun-Bin;Lee, Dong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.112-119
    • /
    • 2009
  • The purpose of this study is to evaluate the evaluation of process yield performed by using Sn & Cu treatment on the surface to optimize process condition for Lead-free solder application. The materials which are used for the New Surface Treatment study are Semi-Dulling plating for high speed Sn/Cu alloy of Soft Alloy GTC-33 Pb free known as "UEMURA Method" and plating substrate is alloy 42.Especially in lead-free plating process, it is important to control plating thickness and Copper composition than Sn/Pb plating. Evaluated and controlled plating thickness $12{\pm}3um$, Copper composition $2{\pm}1%$, plating particle and visual inspection. The optimization of these parameters and condition makes it makes possible to apply Sn/Cu Lead-free solder from Sn/Pb alloy.

A Study on Mechanical Properties for Pb-free Solders of Electronic Packages (전자부품의 Pb-free 솔더에 대한 기계적 특성에 관한 연구)

  • 허우진;백승세;정영훈;권일현;양성모;유효선
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.83-85
    • /
    • 2003
  • This paper is investigated the shear strength by using the micro shear-punch test method for Sn-37Pb alloy, binary and ternary alloys of environment-friendly Pb-free solder alloys which would be surely applicable to the electronic packages. As a result, in case of Max. shear strength, Sn-4Ag-0.5Cu has the highest value and Sn-37Pb has the lowest value on every condition of experiment temperature. Also, In case of Pb-free solder joint specimens, it was found that Pb-free solder alloys have higher value of shear strength than eutectic Sn-Pb solder alloy and Sn-4Ag-0.5Cu has the highest value.

  • PDF

Metallurgical Reaction Properties between In-15Pb-5Ag Solder and Zu-Ni Surface Finish (In-l5Pb-5Ag 솔더와 Au/Ni 층과의 반응 특성)

  • 이종현;엄용성;최광성;최병석;윤호경;박흥우;문종태
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • With the contact pad consisted of $0.5{\mu}{\textrm}{m}$ $Au/5{\mu}{\textrm}{m}$ Ni/Cu layers on a conventional ball grid array(BGA) substrate, metallurgical reaction properties between the pad and In-15(wt.%)Pb-5Ag solder alloy were studied after reflow and solid aging. In as-reflow condition, thin AuIn$_2$or Ni$_{28}$In$_{72}$ intermetallic layer was formed at the solder/pad interface according to reflow time. Dissolution of the Au layer into the molten solder was remarkably limited in comparison with eutectic Sn-37Pb alloy. After solid aging of 300 hrs, thickness of In-Ni layer increased to about $2{\mu}{\textrm}{m}$ in the both as-reflow case. It was observed that In atoms diffuse through the AuIn$_2$phase to react with underlaying Ni layer. The metallurgical reaction properties between In-l5Pb-7Ag alloy and Au/Ni surface finish were analysed to result in suppression of Au-embrittlement in the solder joints.

  • PDF

A Study on the Characteristic of Pb-free Sn-Ag-Bi-Ga Solder Alloys (무연 Sn-Ag-Bi-Ga계 솔더의 특성에 관한 연구)

  • 노보인;이보영
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.42-47
    • /
    • 2000
  • The object of this study is to estimate Sn-Ag-Bi-Ga solder alloy as a substitute for Sn-37Pb alloy. For Sn-Ag-Bi-Ga alloys, Ag, Bi and Ga contents are varied. (Ag : 1~5%, Ga : 3%, Bi : 3~6%) Comparing to Sn-37Pb alloy Sn-Ag-Bi-Ga alloys have wider melting temperature range up to max. $18.7^{\circ}C$. With increasing Ag, Bi contents, the wettability of the alloys increased up to max. 6.6 mN. The vickers hardness of the alloys was max. 46.4 Hv. The ultimate tensile stress of the alloys was max. 60.3 MPa and the elongation was max. 1.2%. The joint strength between circuit board and solder was max. 55.5 N and the joint strength between connector and solder was max. 176.1 N. There were no cracks in this alloys after thermal shock test.

  • PDF

Corrosion behavior and mechanism of CLAM and 316L steels in flowing Pb-17Li alloy under magnetic field

  • Xiao, Zunqi;Liu, Jing;Jiang, Zhizhong;Luo, Lin;Huang, Qunying
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.1962-1971
    • /
    • 2022
  • The liquid lead-lithium (Pb-17Li) blanket has many applications in fusion reactors due to its good tritium breeding performance, high heat transfer efficiency and safety. The compatibility of liquid Pb-17Li alloy with the structural material of blanket under magnetic field is one of the concerns. In this study, corrosion experiments China low activation martensitic (CLAM) steel and 316L steel were carried out in a forced convection Pb-17Li loop under 1.0 T magnetic field at 480 ℃ for 1000 h. The corrosion results on 316L steel showed the characteristic with a superficial porous layer resulted from selective leaching of high-soluble alloy elements and subsequent phase transformation from austenitic matrix to ferritic phase. Then the porous layers were eroded by high-velocity jet fluid. The main corrosion mechanism of CLAM steel was selective dissolution-base corrosion attack on the microstructure boundary regions and exclusively on high residual stress areas. CLAM steel performed a better corrosion resistance than that of 316L steel. The high Ni dissolution rate and the erosion of corroded layers are the main causes for the severe corrosion of 316L steel.

Outer Diameter Stress Corrosion Cracking Susceptibility of Steam Generator Tubing Materials (증기발생기 전열관 재료의 2차측 응력부식균열 민감성)

  • Kim, Dong-Jin;Kim, Hyun Wook;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.118-124
    • /
    • 2011
  • Alloy 600 (Ni 75 wt%, Cr 15 wt%, Fe 10 wt%) as a heat exchanger tube of the steam generator (SG) in nuclear power plants (NPP) has been degraded by various corrosion mechanism during the long-term operation. Especially lead (Pb) is known to be one of the most deleterious species in the secondary system causing outer diameter stress corrosion cracking (ODSCC). Oxide formation and breakdown is requisite for SCC initiation and propagation. Therefore it is expected that a property change of the oxide formed on SG tubing materials by lead addition into a solution is closely related to PbSCC. In the present work, the SCC susceptibility was assessed by using a slow strain rate test (SSRT) in caustic solutions with and without lead for Alloy 600 and Alloy 690 (Ni 60 wt%, Cr 30 wt%, Fe 10 wt%) used as an alternative of Alloy 600 because of outstanding superiority to SCC. The results were discussed in view of the oxide property formed on Alloy 600 and Alloy 690. The oxides formed on Alloy 600 and Alloy 690 in aqueous solutions with and without lead were examined by using a transmission electron microscopy (TEM), equipped with an energy dispersive x-ray spectroscopy (EDXS).