• Title/Summary/Keyword: Pb^{2+} ion

Search Result 333, Processing Time 0.026 seconds

Sub-Micro Molar Monitoring of La3+ by a Novel Lanthanum PVC-Based Membrane Sensor Based on 3-Hydroxy-N'-(pyridin-2-ylmethylene)-2-naphthohydrazide

  • Ganjali, Mohammad Reza;Norouzi, Parviz;Yousefian, Nasrin;Faridbod, Farnoush;Adib, Mehdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1581-1586
    • /
    • 2006
  • A La (III) ion-selective membrane sensor has been fabricated from poly vinyl chloride (PVC) matrix membrane, containing 3-hydroxy-N'-(pyridin-2-ylmethylene)-2-naphthohydrazide (HPMN) as a neutral carrier, potassium tetrakis (p-chlorophenyl) borate (KTpClPB) as an anionic excluder and ortho-nitrophenyloctyl ether (NPOE) as a plasticizing solvent mediator. The effects of membrane composition and pH as well as the influence of the anionic additive on the response properties were investigated. The sensor with 30% PVC, 62% solvent mediator, 6% ionophore and 2% anionic additive, shows the best potentiometric response characteristics. It displays a Nernstian behavior (19.2 mV per decade) across the range of $1.0{\times}10^{-2}-1.0{\times}10^{-7}$ M. The detection limit of the electrode is $7.0{\times}10^{-8}$ M ($\sim$10 ng/mL) and the response time is 15 s from $1.0{\times}10^{-2}$ up to $1.0{\times}10^{-4} $M and 30 s in the range of $1.0 {\times}10^{-5}-1.0{\times}10^{-7}$ M. The sensor can be used in the pH values of 3.0-9.0 for about seven weeks. The membrane sensor was used as an indicator electrode in the potentiometric titration of lanthanum ions with EDTA. It was successfully applied to the lanthanum determination in some mouth wash preparations.

Effects of Ag and Cu Additions on the Electrochemical Migration Susceptibility of Pb-free Solders in Na2SO4 Solution

  • Yoo, Y.R.;Nam, H.S.;Jung, J.Y.;Lee, S.B.;Park, Y.B.;Joo, Y.C.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.50-55
    • /
    • 2007
  • The smaller size and higher integration of advanced electronic package systems result in severe electrochemical reliability issues in microelectronic packaging due to higher electric field under high temperature and humidity conditions. Under these harsh conditions, electronic components respond to applied voltages by electrochemical ionization of metal and the formation of a filament, which leads to short-circuit failure of an electronic component, which is termed electrochemical migration. This work aims to evaluate electrochemical migration susceptibility of the pure Sn, Sn-3.5Ag, Sn-3.0Ag-0.5Cu solder alloys in $Na_{2}SO_{4}$. The water drop test was performed to understand the failure mechanism in a pad patterned solder alloy. The polarization test and anodic dissolution test were performed, and ionic species and concentration were analyzed. Ag and Cu additions increased the time to failure of Pb-free solder in 0.001 wt% $Na_{2}SO_{4}$ solution at room temperature and the dendrite was mainly composed of Sn regardless of the solders. In the case of SnAg solders, when Ag and Cu added to the solders, Ag and Cu improved the passivation behavior and pitting corrosion resistance and formed inert intermetallic compounds and thus the dissolution of Ag and Cu was suppressed; only Sn was dissolved. If ionic species is mainly Sn ion, dissolution content than cathodic deposition efficiency will affect the composition of the dendrite. Therefore, Ag and Cu additions improve the electrochemical migration resistance of SnAg and SnAgCu solders.

Seasonal Variation and Statistical Analysis of Particulate Pollutants in Urban Air (도시대기립자상물질중 오염성분의 계절적 변동 및 통계적 해석)

  • 이승일
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.2
    • /
    • pp.8-23
    • /
    • 1994
  • During the period from Mar., 1991 to Feb., 1992 66 tSP samples were collected by Hi volume air sampler at 1 sampling site in Seoul and the amount of concentration of 21 components(SO$_{4}$$^{2-}$, NO$_{3}$$^{-}$, NH$_{4}$$^{+}$, Cl$^{-}$, Al, Ba, Ca, Cd, Cr, Cu, Fe, It Mg, Mn, Na, Ni, Pt Si, Ti, Zn, Zr ) were measured. And monthly and seasonal variation were surveyed and the principal component analysis( PCA ) were carried out with respect to these amount of pollutants, minimum of visibility and radiation on a horizontal surface. The total amount of soluble ion in water was high in order o(SO$_{4}$$^{2-}$> NO$_{3}$$^{-}$> N%'>Cl$^{-}$ and metal ion was high in order of Na> Ca>Si> Fe> Al> K> Mg> Zn> Pb> Cu>Ti> Mn > Ba> Cr> Zr> Ni> Cd. There was Seasonal variation in concentration for SO$_{4}$$^{2-}$, NH$_{4}$$^{+}$, Cl$^{-}$, Na, Al, Ca, Bt Mg, Fe and Si. It was assumed that the components of the highest concentration on April were depend on yellow sand and the frequency of wind velocity and direction. As the results of PCA, the amount of pollution components was able to characterized with two principal components(Z$_{1}$, Z$_{2}$ ). The first principal components Z$_{1}$ was considered to be a factor indicating the pollutants originated from natural generation and The second principal components Z$_{2}$ was considered to be a factor indicating the pollutants originated from human work. The monthly concentration of pollutants in ISP, minimum of visibility and radiation on a horizontal surface was possible to evaluate by the use of these two principal components Z$_{1}$ and Z$_{2}$ .

  • PDF

Removal Characteristics of Heavy Metals in Acid Mine Drainage (AMD) Using Porous Starfish Ceramics (II) - Treatment of AMD in a Column Reactor System (불가사리 소재 다공성 세라믹을 이용한 산성광산배수 내 중금속의 제거특성(II) - 컬럼연속 실험을 통한 산성광산배수의 처리특성)

  • Lee, Yonghwan;Yim, Soobin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.25-34
    • /
    • 2014
  • The objective of this study was to investigate the removal characteristics and the elimination mechanism of heavy metals in Acid Mine Drainage (AMD) using spherical-type porous Zeolite-StarFish ceramics (porous ZSF ceramics) packed in a continuous column reactor system. The average removal efficiencies of heavy metals in AMD were Al 98.7, As 98.7, Cd 96.0, Cu 89.1, Fe 99.5, Mn 94.4, Pb 96.3 and Zn 80.8 % during 110 days of operation time. The average removal capacity of porous ZSF ceramics for heavy metals were measured to be Al 21.76, As 1.52, Cd 1.27, Cu 3.41, Fe 44.83, Mn 3.48, Pb 2.36 and Zn $3.76mg/kg{\cdot}day$. The analysis results of mechanism using SEM, EDS and XRD exhibited that the porous ZSF ceramics could act as a multi-functional ceramics for the removal of heavy metals in AMD through the reactions of precipitation, adsorption and ion-exchange. The experimental results of column reactor system displayed that the porous ZSF ceramics would be a consistently efficient agent for the removal of heavy metals in AMD for a long term.

Mineralogy and Chemical Properties according to Particle Size Separation of Hwangto (Reddish Residual Soil) used in Feeding of Cattle (한우 사육에 이웅한 황토(풍화토)의 입도분리에 따른 광물성분 및 화학적 특성)

  • 황진연;박현진;양경희;이효민
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.33-43
    • /
    • 2002
  • Mineral composition and chemical properties of Hwangto (reddish residual soil) that used in feeding of cattles at Iksan, Jeollabuk-do, Korea were examined according to particle size separation such as gravel, sand, silt, coarse clay and fine clay. Mineral composition analyses reveal that gravel and sand are mainly composed of quartz and feldspars and that kaolin mineral and illite are dominant in clay and silt. Iron oxides are mainly included in fine clay. According to chemical analyses of major elements, Al, Fe and $H_2O$ contents are increased with decreasing of particle size. This trend well agrees with increase of clay minerals in smaller particles, Chemical analyses of trace elements indicate that contents of Zn, Rb, Sr, Ba, Pb significantly differ with particle sizes. Ba and Sr are included in feldspars since these elements are abundant in sand containing abundant feldspars. Pb and Sm are abundant in sample before particle size separation, but the contents are significantly decreased after separation. Therefore, most of these elements appear to be existed as removable phase. Nb, La, Th, Ce are more abundant in silt. The contents of all the other trace elements tend to be increased in smaller particles containing more clay minerals. The contents of changeable cations and teachable elements in acid and alkali solutions are high in clay samples. All the above results indicate that using the portion of smaller particle of Hwangto for livestock feed rather than bulk Hwangto can improve cation exchangeable capacity, ion leaching capacity and sorption properties.

Effect of Ionic Molar Conductivity on Separation Characteristics of Heavy Metals by Nanofiltration Membranes in Waste Water (이온 몰 전도도가 나노여과막에 의한 폐수 중의 중금속 분리특성에 미치는 영향)

  • Oh, Jeong-Ik
    • Land and Housing Review
    • /
    • v.4 no.1
    • /
    • pp.119-124
    • /
    • 2013
  • Generally, the characteristic of nanofiltration membranes were catagorized into charged membrane, sieve effect, interaction between membarnes and target solutes. This study aims to investigate the effect item of heavy metal separation with view of charge nanofiltration membranes. The experiments of nanofiltration were conducted by nanofiltration set-up with operational pressure of 0.24 MPa at $25^{\circ}C$ by using synthetic wastewater containing 0.1mg/L of Cr, Fe, Cu, Zn, As, Sn, Pb. Nanofiltration membranes rejected heavy metals much better than chloride, sulfate and TOC, of which concentration in synthetic wastewater was higher than that of heavy metals. To consider rejection characteristics of various metals by nanofiltration membranes, separation coefficient, which is the molar conductivity ratio of the metal permeation rate to the chloride ion or TOC permeation rate, was introduced. In spite of different materials and different nominal salt rejection of nanofiltration membrane used, the separation coefficients of metals were nearly the same. These phenomena were observed in the relationship between the molar conductivity and the separation coefficient for heavy metals.

Halogen Exchange Reactions of Benzyl Halides Part Ⅱ-Kinetics of Reactions of Iodide Ion with Benzyl Chloride and Bromide in 90% Ethanol-water (벤질 할라이드의 할로겐 교환반응 (제Ⅱ보) 90% 에탄올 용액에서의 염화 및 브롬화 벤질과 요오드화 이온 간의 교환반응 속도)

  • Lee Bon-su;Whangbo Myung Hwan;Lee Ik Choon
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.103-108
    • /
    • 1969
  • 전보에 이어 90% 에탄올 용액에서의 염화 벤질 및 브롬화 벤질과 요오드화 이온 간의 교환반응을 연구하였다. HSAB이론을 도입하여 할로겐화 이온의 pb혼합 궤도가 서로 겹치는 전이 상태로서 실험 결과를 설명하였다.

  • PDF

Ion Exchange Separation of Minor Elements from Iron for the Analysis of S/G Sludge

  • Park, Kyoung-Kyun;Choi, Kwang-Soon;Kim, Jong-Goo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.05a
    • /
    • pp.309-310
    • /
    • 2005
  • Some minor elements(Al, B, Ba, Ca, Cd, Co, Cr, Cu, Gd, Mg, Mn, Mo, Nd, Ni, P, Pb, Si, Sn, Sr, Ti, V, Yb, Zn and Zr) in iron compounds such as the S/G sludge of a power plant were separated from iron by anionic and cationic exchange methods. If a ICP-AES or AAS determination follows this method, minor elements of more than 2 or 20 ppm of Fe can be determined with an error less than 20% except Sn and Mo. Alkaline elements were excluded from this study since they can be easily recovered from an anionic exchange. Application to real sludge samples is ongoing.

  • PDF

Comparions of Removal Performances of Divalent Heavy Metals by Natural and Pretreated Zeolites (천연 및 전처리 제올라이트에 의한 2가 중금속 이온 제거능의 비교.검토)

  • 감상규;김덕수;이민규
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.399-409
    • /
    • 1999
  • The three domestic natural zeolites(Yong dong-ri (Y), Daesin-ri (D), Seogdong-ri (S)) harvested in Kyeongju-shi and Pohang-shi, Kyungsangbug-Do, were pretreatd with each of the NaOH, $Ca(OH)_2$ and NaOH following HCl solutions, and the removal performances of divalent haevy metals(Cu, Mn, Pb, and Sr) for natural and pretreated zeolites were investigated and compared in the single and mixed solutions. The natural zeolite-heavy metal system attained the final equilibrium plateau within 20 min, irrespective of initial heavy metal concentration. The heavy metal uptakes increased with increasing initial heavy metal concentration and pH. The heavy metal uptakes for natural zeolites decreased in the following sequences : D>Y>S among the natural zeolites; Pb>Cu>Sr>Mn among the heavy metals. The pretreated zeolites showed higher heavy metal removal performances than natural zeolites and decreased in the order of NaOH, NaOH following HCl, $Ca(OH)_2$ treatment among the pretreatment methods. The heavy metal ion exchange capacity by natural and pretreated zeolites was described either by Freundlich equation or Langmuir equation, but it followed the former better than the latter. The heavy metal uptakes for natural zeolites decreased in the mixed solution, in comparing with those in the single solution and especially, the manganese uptake decreased greatly in the mixed solution. The pretreated zeolites showed the improved removal performances of heavy metals in the mixed solution than in the single solution and the heavy metal uptakes by those in the mixed solution showed the same trends in the single solution among the chemical treatment methods and heavy metals.

  • PDF

Synthesis of Ligands Containing Thiophene- or Furan- groups and Determination of Stability Constants of Chelating Compounds for Removal of Heavy Metals (Cd 2+,Pd 2+,Zn 2+,Cu 2+) in Aqueous Solution (수용액 중의 중금속 (Cd 2+,Pd 2+,Zn 2+,Cu 2+)이온 분리를 위한 티오펜 및 퓨란기를 포함하는 리간드들의 합성과 착화합물의 안정도상수 결정)

  • Kim, Jun Gwang;Kim, Jeong Seong
    • Journal of Environmental Science International
    • /
    • v.13 no.4
    • /
    • pp.435-440
    • /
    • 2004
  • The thiophene or furan-containing hexadentate ligands 1, 12-bis (2-theophene )-2,5,8,ll-tetraazadodecane(Thiotrien ㆍ 4HCl) and 1,12-bis (2-furan)-2,5,8,11-tetraazadodecane(Furatrienㆍ4HC1) were synthesized as their tetrahydrochloride salt and characterized by EA, IR, NMR, and Mass spectrum. Their protonation constants (logK$_{nH}$) and stability constants (logK$^{M}_{L}$ for Cd$^{2+}$, Pb$^{2+}$, $Zn^{2+}$ and Cu$^{2+}$ ions were determined in aqueous solution by potentiometry and compared with 1, 12-bis(2-pyridyl)-2,5,8, 11-tetra-azadodecane(Pytrien) of pyridyl-containing ligand. The effect stability constants of ligands and metal ion for removal of heavy metals in aqueous solution were described.