• Title/Summary/Keyword: Pavement Asset Management

Search Result 19, Processing Time 0.019 seconds

Internal Property and Stochastic Deterioration Modeling of Total Pavement Condition Index for Transportation Asset Management (도로자산관리를 위한 포장종합평가지수의 속성과 변화과정의 모델링)

  • HAN, Daeseok;DO, Myungsik;KIM, Booil
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.1-11
    • /
    • 2017
  • PURPOSES : This study is aimed at development of a stochastic pavement deterioration forecasting model using National Highway Pavement Condition Index (NHPCI) to support infrastructure asset management. Using this model, the deterioration process regarding life expectancy, deterioration speed change, and reliability were estimated. METHODS : Eight years of Long-Term Pavement Performance (LTPP) data fused with traffic loads (Equivalent Single Axle Loads; ESAL) and structural capacity (Structural Number of Pavement; SNP) were used for the deterioration modeling. As an ideal stochastic model for asset management, Bayesian Markov multi-state exponential hazard model was introduced. RESULTS:The interval of NHPCI was empirically distributed from 8 to 2, and the estimation functions of individual condition indices (crack, rutting, and IRI) in conjunction with the NHPCI index were suggested. The derived deterioration curve shows that life expectancies for the preventive maintenance level was 8.34 years. The general life expectancy was 12.77 years and located in the statistical interval of 11.10-15.58 years at a 95.5% reliability level. CONCLUSIONS : This study originates and contributes to suggesting a simple way to develop a pavement deterioration model using the total condition index that considers road user satisfaction. A definition for level of service system and the corresponding life expectancies are useful for building long-term maintenance plan, especially in Life Cycle Cost Analysis (LCCA) work.

Application and Data Architecture Design for A Pavement Asset Management System based on the Level of Service (서비스수준에 기반한 도로포장자산관리시스템의 응용 및 데이터 아키텍처 설계)

  • Choi, Won-Sik;Lim, Jong-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.919-930
    • /
    • 2011
  • National highway is one of the social infrastructures that continue to be managed in order to serve their full functions. The national highway has been managed by the Pavement Management System (PMS) until now. The PMS manages the highway as a way of facility maintenance and maximizes the service life of the highway with minimum cost. The cost is evaluated mainly with a facility manager's perspective based on engineering judgment. People's needs of quality of life have been increased as their income level is rising and naturally the opinion of citizen as a taxpayer plays an important role in determining national policy. Therefore, the contentment of a user's perspective was the starting point of addressing these needs. The Level of Service began to be used as a measure for the evaluation of the user's perspective. In this thesis we would like to design an application and a data architecture for a pavement asset management system and to show how it meets the requirements of KTAM-40 Systems.

Infrastructure Asset Management System Methodologies for Infrastructure Asset Management System in U.S.

  • Lee Sang-Youb;Chung Seung-Hyun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.67-72
    • /
    • 2003
  • Infrastructure asset management is a methodology for programming infrastructure capital investments and adjusting infrastructure service provision to fulfil established performance, considering the life-cycle perspective of infrastructure. In this study, the methodologies for infrastructure asset management system implemented in sewer management system, bridge management system, pavement and highway management system, and embankment dam management system are described with focus on the system in U.S. As the major methodology to support the decision-making for asset mangers to better allocate the limited funds to the area needing it the most. various demand forecasting methodologies used in wastewater, water, transportation, electricity, and construction are also introduced for their applicability towards infrastructure asset management.

  • PDF

Practical Approach for Pavement Treatment Decisions for Local Agencies

  • Abdelaty, Ahmed;Jeong, H. David;Smadi, Omar
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.1
    • /
    • pp.30-36
    • /
    • 2017
  • Most local agencies such as counties and small cities continuously express difficulties in making technically and financially defensible decisions on their pavement infrastructure maintenance and rehabilitation. Unlike pavement systems managed by state highway agencies, the total lane-miles of many local pavements are significantly short and they are managed by a limited number of staff who typically have multiple responsibilities. Most local agencies also do not have historical pavement performance data and the lack of a systematic decision making framework exacerbates the problem. A structured framework and an easily accessible decision support tool that reflects their local requirements, practices and operational conditions would greatly assist them in making consistent and defensible decisions. This study fills this gap by developing a systematic pavement treatment selection framework and a spreadsheet based tool for local agencies. It is expected that the proposed framework will significantly help local agencies to improve their pavement asset management practices at the project level.

Development of Tunnel Asset Management (TAM) Program

  • Hamed Zamenian;Dae-Hyun (Dan) Koo
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.576-582
    • /
    • 2013
  • Typical highway infrastructure systems include roadway pavement, drainage systems, tunneling, and other hardware components such as guardrails, traffic signs, and lighting. Tunnels in a highway system have provided significant advantages to overcoming various natural challenges including crossing underneath bodies of water or through mountainous areas. While only a few tunnel failure cases have been reported, the failure rate is likely to increase as these assets age and because agencies have not emphasized tunneling asset management. A tunnel system undergoes a deterioration life cycle pattern that is similar to other infrastructure systems. There are very few agencies in the United States implementing comprehensive tunnel asset management programs. While current tunnel asset management programs focus on inspection, maintenance, and operation safety, there is an increasing need for the development of a comprehensive life cycle tunnel asset management program. This paper describes a conceptual framework for a comprehensive tunnel asset management program. The framework consists of three basic phases including a strategic plan, a tactical plan, and an operational plan to provide better information to the decision makers. The strategic plan is a basic long term approach of tunnel asset management. The tactical plan determines specific objectives and the operational plan actually applies asset management objectives in practice. The information includes operational condition, structural condition, efficiency of the system, emergency response, and life cycle cost analysis for tunnel capital improvement project planning.

  • PDF

Asset Evaluation Method for Road Pavement Considering Life Cycle Cost (생애주기비용을 고려한 도로포장의 자산가치 평가에 대한 연구)

  • Do, Myungsik;Kim, Jeunghwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.63-72
    • /
    • 2009
  • This study aims at establishing the decision-making support system for the highway assets, long-term performance presumption and evaluation of asset value, which are appropriate for Korea, and proposing the methods of the optimal engineering method and the timing decision for the preventive maintenance through the project evaluation, the optimization method and life-cycle analysis related to the highways. In order to supplement the current problem of the near-sighted budget management system, which chooses the maintenance place of the highway, depending on the level of the budget with fixed amount, the long-term required budget prediction system and the economy principle were introduced, so that the pavement agency can predict the level of the required budget, and it was aimed to develop the pavement asset evaluation system to maintain the performance of the highway with the minimum of the cost. In the use of the highway pavement asset evaluation system, to maintain the appropriate level of the pavement evaluation index, when the budget was efficiently established in the reference of the required maintenance budget for the chosen section of the highway in the year concerned, it was possible to analyze the most rational pavement maintenance budget. With this result, it is estimated to prevent the unnecessary waste of budget in advance, and through the development of the decision-making system for the long-term performance presumption and the asset value estimation of the pavement, it is expected to able to analyze the previous evaluation of the project related to the highway and the feasibility of introduction.

Development of Korean Life Cycle Cost Analysis Model for Road Pavement Asset Management (도로포장자산관리를 위한 한국형 생애주기비용 모형 개발)

  • Han, Daeseok;Do, Myungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1639-1650
    • /
    • 2013
  • Road pavement management is an important activity that affects to national economy, movement and safety of people, and also demands huge amount of budget. Therefore, its management strategy must be established under objective information. In addition, decision support system that produces the management strategy needs to consider practical benefits from various aspects. Considering these aspects, this paper aimed to develop a customized Korean life cycle cost analysis model estimating various effects on road users and socio-environmental costs based on pavement condition. The suggested LCCA model focused on Korean national highway, and tried to adopt a national guideline recommended by Korean government for securing credibility of estimation results. In the development processes, some of the suggestions that do not fit well in the situations of pavement management field were added, altered, or partially modified. These attempts to develop customized asset management system would be an important step to break away from passive attitudes relying on ready-made software, but also to improve awareness about the social benefits from the better maintenance strategy.

Development of Deterioration Model for Cracks in Asphalt Pavement Using Deep Learning-Based Road Asset Monitoring System (딥러닝 기반의 도로자산 모니터링 시스템을 활용한 아스팔트 도로포장 균열률 파손모델 개발)

  • Park, Jeong-Gwon;Kim, Chang-Hak;Choi, Seung-Hyun;Do, Myung-Sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.133-148
    • /
    • 2022
  • In this study, a road pavement crack deterioration model was developed for a pavement road sections of the Sejong-city. Data required for model development were acquired using a deep learning-based road asset monitoring system. Road pavement monitoring was conducted on the same sections in 2021 and 2022. The developed model was analyzed by dividing it into a method for estimating the annual average amount of deterioration and a method based on Bayesian Markov Mixture Hazard model. As a result of the analysis, it was found that an analysis results similar to the crack deterioration model developed based on the data acquired from the Automatic pavement investigation equipmen was derived. The results of this study are expected to be used as basic data by local governments to establish road management plans.

Evaluation of Road Asset Value using Alternative Depreciation methods : Focusing on National Highway No.1 (대체적 감가상각기법을 활용한 도로자산의 가치 평가 : 국도 1호선을 중심으로)

  • Do, Myungsik;Park, Sunghwan;Choi, Seunghyun
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.19-30
    • /
    • 2017
  • PURPOSES : This study proposes the road asset valuation approach using alternative depreciation methods. It has become necessary to have asset management system according to the adoption of accrual basis accounting for governmental financial reporting and the amendment of the road act. Therefore, it is very important to analyze the effect of depreciation methods on road asset value as a basic research for road asset management system. METHODS : The Ministry of Strategy and Finance (MOSF) has mainly performed road asset valuation based on Write down Replacement Cost and Straight Line depreciation method. This study suggests some appropriate asset valuation methods for road assets through case analysis using three depreciation methods: Consumption-based depreciation method, Condition-based depreciation method, and Straight Line depreciation method. A road asset valuation data of national highway route 1 (year 2014) is used to analyze the effect of three depreciation methods on the road asset value. Road assets include land and structures (pavement, bridge, and tunnel). This study mainly focuses on structures such as bridges and tunnels, because according to governmental accounting standards, land and road pavement assets do not depreciate. RESULTS : The main results of this study are as follows. Firstly, overall asset value of national highway route 1 was estimated at 6.97 trillion KRW when MOSF's method (straight-line depreciation method) is applied. Secondly, asset value was estimated at 4.85 trillion KRW on application of consumption-based depreciation method. Thirdly, asset value was estimated at 4.37 trillion KRW when condition-based depreciation method is applied. Therefore, either consumption-based or condition-based depreciation methods would be more appropriate than straight-line depreciation method if we can use the condition data of road assets including land that are available in real time. CONCLUSIONS : Since road assets such as pavements, bridges, and tunnels have various patterns of deterioration and condition monitoring period, it is necessary to consider a specific valuation method according to the condition of each road asset. Firstly, even though road pavements do not depreciate, asset valuation through condition-based depreciation method would be more appropriate when requirements for application of non-depreciation approach are not satisfied. Since bridge and tunnel facilities show various patterns of deterioration and condition monitoring period by type and condition level, consumption-based depreciation method based on deterioration model would be appropriate. Therefore, it is necessary to have a reasonable asset management system to apply condition-based depreciation method and a periodic condition investigation to manage road assets well.