• Title/Summary/Keyword: Patterning layer

Search Result 230, Processing Time 0.024 seconds

Development of Ag Nanowire Patterning Process Using Sacrificial Layer (희생층을 이용한 은 나노와이어 패터닝 공정 개발)

  • Ha, Bonhee;Jo, Sungjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.435-439
    • /
    • 2016
  • We developed a Ag nanowire patterning technique using a water-soluble sacrificial layer. To form a water-soluble sacrificial layer, germanium was deposited on the substrate and then water-soluble germanium oxide was simply formed by thermal oxidation of germanium using a conventional furnace. The formation of Ag nanowire patterns with various line and space arrangements was successfully demonstrated using this patterning process. The main advantage of this patterning technique is that it does not use a strong acid etchant, thereby preventing damage to the Ag nanowire during the patterning process.

The stable e-beam deposition of metal layer and patterning on the PDMS substrate (PDMS 기판상에 금속층의 안정적 증착 및 패터닝)

  • Baek, Ju-Yeoul;Kwon, Gu-Han;Lee, Sang-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.423-429
    • /
    • 2005
  • In this paper, we proposed the fabrication process of the stable e-beam evaporation and the patterning of metals layer on the polydimethylsiloxane (PDMS) substrate. The metal layer was deposited under the various deposition rate, and its effect to the electrical and mechanical properties (e.g.: adhesion-strength of metal layer) was investigated. The influence of surface roughness to the adhesion-strength was also examined via the tape test. Here, we varied the roughness by changing the reactive ion etching (RIE) duration. The electrode patterning was performed through the conventional photolithography and chemical etching process after e-beam deposition of $200{\AA}$ Ti and $1000{\AA}$ Au. As a result, the adhesion strength of metal layer on the PDMS surface was greatly improved by the oxygen plasma treatment. The e-beam evaporation on the PDMS surface is known to create the wavy topography. Here, we found that such wavy patterns do not effect to the electrical and mechanical properties. In conclusion, the metal patterns with minimum $20{\mu}m$ line width was produced well via the our fabrication process, and its electrical conductance was almost similar to the that of metal patterns on the silicon or glass substrates.

Fabrication of High-Resolution Pixels in Organic Light-Emitting Displays Using Laser-Inscribed Sacrificial Layer

  • Choi, Won-Suk;Kim, Min-Hoi;Na, Yu-Jin;Koo, Kyung-Mo;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.755-757
    • /
    • 2009
  • We developed a novel patterning method of organic light emitting materials using a laser-inscribed sacrificial layer for fabricating high-resolution pixels in organic light emitting displays (OLEDs). Our patterning process is capable of achieving high spatial resolution of about 10 ${\mu}m$. Moreover, it has no detrimental effect on the electrical properties of organic materials. This patterning approach is expected to be applicable for patterning and integrating a wide range of organic materials for organic electronic and optoelectronic devices.

  • PDF

Simultaneous Patterning and Passivation of P3HT-OTFTs with Photosensitive Poly Vinyl-alcohol(PVA) Layer (감광성 PVA 박막을 이용한 P3HT 유기박막트랜지스터의 패턴 형성과 패시베이션)

  • Nam, Dong-Hyun;Park, Kyeong-Dong;Park, Jeong-Hwan;Han, Kyo-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.426-433
    • /
    • 2008
  • We first demonstrated simultaneous patterning and passivation of P3HT active layer with photosensitive PVA. The passivation layers were obtained by annealing the organic layers after developing PVA and subsequent over-etching the P3HT layer. The fabricated OTFTs were electrically characterized. The OTFTs exhibited the mobility of ${\sim}5.9{\times}10^{-4}\;cm^2/V{\cdot}s$ and on/off current ratio of ${\sim}10^4$. After passivation, the results showed the extended lifetime of ${\sim}250$ hours with photosensitive PVA layer.

Micro-Contact Printing Method for Patterning Liquid Crystal Alignment Layers

  • Jung, Jong-Wook;Kim, Hak-Rim;Lee, You-Jin;Kim, Jae-Hoon
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.12-15
    • /
    • 2006
  • We propose a patterning method of liquid crystal (LC) alignment layer for producing multi-domain LC structures. By controlling thermal conditions during micro-contact printing procedures and facilitating wetting properties of patterning materials, patterned LC orientation can be easily obtained on a bare ITO surface or other polymer films. The newly proposed patterning method is expected to be a very useful tool for fabricating multi-domain LC structures to enhance or design electro-optic properties of LC-based devices.

Thermal Transfer Pixel Patterning by Using an Infrared Lamp Source for Organic LED Display (유기 발광 소자 디스플레이를 위한 적외선 램프 소스를 활용한 열 전사 픽셀 패터닝)

  • Bae, Hyeong Woo;Jang, Youngchan;An, Myungchan;Park, Gyeongtae;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • This study proposes a pixel-patterning method for organic light-emitting diodes (OLEDs) based on thermal transfer. An infrared lamp was introduced as a heat source, and glass type donor element, which absorbs infrared and generates heat and then transfers the organic layer to the substrate, was designed to selectively sublimate the organic material. A 200 nm-thick layer of molybdenum (Mo) was used as the lightto-heat conversion (LTHC) layer, and a 300 nm-thick layer of patterned silicon dioxide (SiO2), featuring a low heat-transfer coefficient, was formed on top of the LTHC layer to selectively block heat transfer. To prevent the thermal oxidation and diffusion of the LTHC material, a 100 nm-thick layer of silicon nitride (SiNx) was coated on the material. The fabricated donor glass exhibited appropriate temperature-increment property until 249 ℃, which is enough to evaporate the organic materials. The alpha-step thickness profiler and X-ray reflection (XRR) analysis revealed that the thickness of the transferred film decreased with increase in film density. In the patterning test, we achieved a 100 ㎛-long line and dot pattern with a high transfer accuracy and a mean deviation of ± 4.49 ㎛. By using the thermal-transfer process, we also fabricated a red phosphorescent device to confirm that the emissive layer was transferred well without the separation of the host and the dopant owing to a difference in their evaporation temperatures. Consequently, its efficiency suffered a minor decline owing to the oxidation of the material caused by the poor vacuum pressure of the process chamber; however, it exhibited an identical color property.

High Quality Non-Transfer Single-Layer Graphene Process Grown Directly on Ti(10 nm)-Buffered Layer for Photo Lithography Process (포토 리소그래피 공정을 위한 Ti(10 nm)-Buffered층 위에 직접 성장된 고품질 무전사 단층 그래핀 공정)

  • Oh, Keo-Ryong;Han, Yire;Eom, Ji-Ho;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.21-26
    • /
    • 2021
  • Single-layer graphene is grown directly on Ti-buffered SiO2 at 100℃. As a result of the AFM measurement of the Ti buffer layer, the roughness of approximately 0.2 nm has been improved. Moreover, the Raman measurement of graphene grown on it shows that the D/G intensity ratio is extremely small, approximately 0.01, and there are no defects. In addition, the 2D/G intensity ratio had a value of approximately 2.1 for single-layer graphene. The sheet resistance is also 89 Ω/□, demonstrating excellent characteristics. The problem was solved by using graphene and a lift-off patterning method. Low-temperature direct-grown graphene does not deteriorate after the patterning process and can be used for device and micro-patterning research.

The Effect of Energy-absorbing layers on Micro-patterning of Magnetic Metal Films using Nd:YAG Laser (Nd:YAG Laser를 이용한 자성금속막의 패턴 식각에 있어서 에너지 흡수층이 미치는 영향)

  • 이주현;채상훈;서영준;송재성;민복기;안승준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.538-544
    • /
    • 2000
  • The laser patterning of sputter-deposited CoNdZr/Cu/CoNbZr multi-layered films had been tried using Nd:YAG laser. However generally it is very difficult to remove metal films because of their high reflectance of the laser on the surfaces. As a counterproposal for this problem authors for the first time tried to deposit energy-absorbing layers on the metal films and then irradiated the laser on the surfaces of energy-absorbing layers. Here the energy-absorbing layers consisted of laser energy-absorbing fine powders and binding polymers. Three kinds of powders for the energy-absorbing layers had been used to see the difference in the pattern formation with the degree of laser energy absorption. They were electrically conductive silver powders insulating BaTiO$_3$powder and semiconducting carbon powder. Remarkable difference in width of the formed pattern and the roughness of pattern edge were observed with the characteristic of the powder for the energy-absorbing layer. The pattern width using carbon paste was about three times larger than that using BaTiO$_3$paste. It was observed that the energy-absorbing layer with carbon was the most effective on this micro-patterning.

  • PDF

Selective Ablation of Emissive Polymer Using Nanosecond-pulsed Laser (나노초 펄스 레이저를 이용한 발광폴리머 패터닝)

  • Ko, J.S.;Oh, B.K.;Kim, D.Y.;Lee, J.Y.;Lee, S.K.;Jung, S.H.;Hong, S.K.
    • Laser Solutions
    • /
    • v.14 no.3
    • /
    • pp.7-11
    • /
    • 2011
  • As an active emission display using emissive polymer has had much attention recently, needs for a selective patterning of emissive layer for those displays have been increased abruptly. Therefore, the various laser sources in terms of its wavelength has been used for laser direct patterning. In this work, the feasibility of those processes is examined using numerical analysis and the experimental investigation. A sample has multi-layered structure, emissive polymer on aluminum which is deposited on a glass substrate. Key factors for optimizing the laser patterning of the emissive polymer are considered into the control of ablation products, large-sized particle, and the choice of the appropriate wavelength for minimizing the heat affected zone and the remnant layer.

  • PDF