• Title/Summary/Keyword: Patterned chemical surface

Search Result 97, Processing Time 0.026 seconds

Planarization technology of thick copper film structure for power supply (전력 소자용 후막 구리 구조물의 평탄화)

  • Joo, Suk-Bae;Jeong, Suk-Hoon;Lee, Hyun-Seop;Kim, Hyoung-Jae;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.523-524
    • /
    • 2007
  • This paper discusses the planarization process of thick copper film structure used for power supply device. Chemical mechanical polishing(CMP) has been used to remove a metal film and obtain a surface planarization which is essential for the semiconductor devices. For the thick metal removal, however, the long process time and other problems such as dishing, delamination and metal layer peeling are being issued, Compared to the traditional CMP process, Electro-chemical mechanical planarization(ECMP) is suggested to solve these problems. The two-step process composed of the ECMP and the conventional CMP is used for this experiment. The first step is the removal of several tens ${\mu}m$ of bulk copper on patterned wafer with ECMP process. The second step is the removal of residual copper layer aimed at a surface planarization. For more objective comparison, the traditional CMP was also performed. As an experimental result, total process time and process defects are extremely reduced by the two-step process.

  • PDF

Surface Analysis of Plasma Pretreated Sapphire Substrate for Aluminum Nitride Buffer Layer

  • Jeong, Woo Seop;Kim, Dae-Sik;Cho, Seung Hee;Kim, Chul;Jhin, Junggeun;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.699-704
    • /
    • 2017
  • Recently, the use of an aluminum nitride(AlN) buffer layer has been actively studied for fabricating a high quality gallium nitride(GaN) template for high efficiency Light Emitting Diode(LED) production. We confirmed that AlN deposition after $N_2$ plasma treatment of the substrate has a positive influence on GaN epitaxial growth. In this study, $N_2$ plasma treatment was performed on a commercial patterned sapphire substrate by RF magnetron sputtering equipment. GaN was grown by metal organic chemical vapor deposition(MOCVD). The surface treated with $N_2$ plasma was analyzed by x-ray photoelectron spectroscopy(XPS) to determine the binding energy. The XPS results indicated the surface was changed from $Al_2O_3$ to AlN and AlON, and we confirmed that the thickness of the pretreated layer was about 1 nm using high resolution transmission electron microscopy(HR-TEM). The AlN buffer layer deposited on the grown pretreated layer had lower crystallinity than the as-treated PSS. Therefore, the surface $N_2$ plasma treatment on PSS resulted in a reduction in the crystallinity of the AlN buffer layer, which can improve the epitaxial growth quality of the GaN template.

Formation of Size-controllable Ag Nanoparticles on Si Substrate by Annealing (크기 조절이 가능한 은 나노입자 형성을 위한 박막의 열처리 효과)

  • Lee, Sang Hoon;Lee, Tae Il;Moon, Kyeong-Ju;Myoung, Jae Min
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.379-384
    • /
    • 2013
  • In order to produce size-controllable Ag nanoparticles and a nanomesh-patterned Si substrate, we introduce a rapid thermal annealing(RTA) method and a metal assisted chemical etching(MCE) process. Ag nanoparticles were self-organized from a thin Ag film on a Si substrate through the RTA process. The mean diameter of the nanoparticles was modulated by changing the thickness of the Ag film. Furthermore, we controlled the surface energy of the Si substrate by changing the Ar or $H_2$ ambient gas during the RTA process, and the modified surface energy was evaluated through water contact angle test. A smaller mean diameter of Ag nanoparticles was obtained under $H_2$ gas at RTA, compared to that under Ar, from the same thickness of Ag thin film. This result was observed by SEM and summarized by statistical analysis. The mechanism of this result was determined by the surface energy change caused by the chemical reaction between the Si substrate and $H_2$. The change of the surface energy affected on uniformity in the MCE process using Ag nanoparticles as catalyst. The nanoparticles formed under ambient Ar, having high surface energy, randomly moved in the lateral direction on the substrate even though the etching solution consisting of 10 % HF and 0.12 % $H_2O_2$ was cooled down to $-20^{\circ}C$ to minimize thermal energy, which could act as the driving force of movement. On the other hand, the nanoparticles thermally treated under ambient $H_2$ had low surface energy as the surface of the Si substrate reacted with $H_2$. That's why the Ag nanoparticles could keep their pattern and vertically etch the Si substrate during MCE.

Fluorescent Pattern Generation on the Fluorescent Photopolymer with 2-beam Coupling Method (2-beam Coupling 방법을 이용한 광 고분자 형광 패턴 형성)

  • Kim, Yoon-Jung;Kim, Jeong-Hun;Sim, Bo-Yeon;Lee, Myeong-Kyu;Kim, Eun-Kyoung
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • Fluorescent photopolymer film was prepared with composition containing acrylate monomer, binder, a visible light sensitive photo initiator, and fluorescent anthracene polymer. A fluorescent grating pattern was inscribed on the photopolymer film using a 2-beam coupling method. A 514 nm laser was coupled to generate a beam-interference pattern. A highly fluorescent diffractive line pattern was formed on the fluorescent photopolymer within 30 sec. of exposure. The fluorescence intensity was highly enhanced in the patterned area, possibly due to the change in the environment of the fluorescent polymers by the photo-polymerization of monomers. Under a photo-mask, a gap electrode pattern was formed of fluorescent gratings with a sub-micron scale, which was matched well to the calculated value ($2.5\;{\mu}m$ and $0.6\;{\mu}m$) based on the refractive index of the photopolymer and beam incident angle ($3.4^{\circ}$, $15^{\circ}$) to the photopolymer surface.

Experimental Demonstration of Enhanced Transmission Due to Impedance-matching Si3N4 Layer in Perforated Gold Film

  • Park, Myung-Soo;Yoon, Su-Jin;Hwang, Je-Hwan;Kang, Sang-Woo;Kim, Deok-kee;Ku, Zahyun;Urbas, Augustine;Lee, Sang Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.359-359
    • /
    • 2014
  • In this study, surface plasmon resonance structures for the selective and the enhanced transmission of infrared light were designed. In order to relieve the large discontinuity of refractive index between air and metal hole array, $Si_3N_4$ was used as the impedance matching layer. Experimental parameter were calculated and determined in advance by the rigorous coupled wave analysis (RCWA) simulation, and then the experiment was carried out. A 2-dimensional metal hole array structures were patterned on the size of $1{\times}1cm^2$ GaAs substrate using photolithography process, and 5 nm thick Ti, 50 nm thick Au were deposited by E-beam evaporator, respectively. Subsequently, $Si_3N_4$ films with various thicknesses (150, 350, 550, and 750 nm) were deposited by plasma enhanced chemical vapor deposition (PECVD). For the comparison, transmittance of specimens with and without $Si_3N_4$ was measured using Fourier transform infrared spectroscopy (FTIR) in the range of $2.5-15{\mu}m$. Furthermore, the surface and the cross-sectional images were collected from the specimens by scanning electron microscopy (SEM). From the results, it was demonstrated that the transmittance was enhanced up to 80% by the deposition of 750 nm $Si_3N_4$ at $6.23{\mu}m$. It has advantage of enhanced transmission despite the simple fabrication process.

  • PDF

CFD simulation of cleaning nanometer-sized particulate contaminants using high-speed injection of micron droplets (초고속 미세 액적 충돌을 이용한 나노미터 크기 입자상 오염물질의 세정에 대한 CFD 시뮬레이션)

  • Jinhyo, Park;Jeonggeon, Kim;Seungwook, Lee;Donggeun, Lee
    • Particle and aerosol research
    • /
    • v.18 no.4
    • /
    • pp.129-136
    • /
    • 2022
  • The line width of circuits in semiconductor devices continues to decrease down to a few nanometers. Since nanoparticles attached to the patterned wafer surface may cause malfunction of the devices, it is crucial to remove the contaminant nanoparticles. Physical cleaning that utilizes momentum of liquid for detaching solid nanoparticles has recently been tested in place of the conventional chemical method. Dropwise impaction has been employed to increase the removal efficiency with expectation of more efficient momentum exchange. To date, most of relevant studies have been focused on drop spreading behavior on a horizontal surface in terms of maximum spreading diameters and average spreading velocity of drop. More important is the local liquid velocity at the position of nanoparticle, very near the surface, rather than the vertical average value. In addition, there are very scarce existing studies dealing with microdroplet impaction that may be desirable for minimizing pattern demage of the wafer. In this study, we investigated the local velocity distribution in spreading liquid film under various impaction conditions through the CFD simulation. Combining the numerical results with the particle removal model, we estimated an effective cleaning diameter (ECD), which is a measure of the particle removal capacity of a single drop, and presented the predicted ECD data as a function of droplet's velocity and diameter particularly when the droplets are microns in diameter.

Capillary Assembly of Silicon Nanowires Using the Removable Topographical Patterns

  • Hong, Juree;Lee, Seulah;Lee, Sanggeun;Seo, Jungmok;Lee, Taeyoon
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.509-514
    • /
    • 2014
  • We demonstrate a simple and effective method to accurately position silicon nanowires (Si NWs) at desirable locations using drop-casting of Si NW inks; this process is suitable for applications in nanoelectronics or nanophotonics. Si NWs were assembled into a lithographically patterned sacrificial photoresist (PR) template by means of capillary interactions at the solution interface. In this process, we varied the type of solvent of the SiNW-containing solution to investigate different assembly behaviors of Si NWs in different solvents. It was found that the assembly of Si NWs was strongly dependent on the surface energy of the solvents, which leads to different evaporation modes of the Si NW solution. After Si NW assembly, the PR template was cleanly removed by thermal decomposition or chemical dissolution and the Si NWs were transferred onto the underlying substrate, preserving its position without any damage. This method enables the precise control necessary to produce highly integrated NW assemblies on all length scales since assembly template is easily fabricated with top-down lithography and removed in a simple process after bottom-up drop-casting of NWs.

Development of New Surfaces and Materials for Separation Science

  • Linford, Matthew R.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.59.1-59.1
    • /
    • 2015
  • In the Linford group at Brigham Young University we have recently developed three new sets of materials for three different areas of separations science: thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and solid phase microextraction (SPME). First, via microfabrication we have grown patterned carbon nanotube (CNT) forests on planar substrates that we have infiltrated with inorganic materials such as silicon nitride. The coatings on the CNTs are conformal and typically deposited in a process like low pressure chemical vapor deposition. The resulting materials have high surface areas, are porous, and function as effective separation devices, where separations on our new TLC plates are typically significantly faster than on conventional devices. Second, we used the layer-by-layer (electrostatically driven) deposition of poly (allylamine) and nanodiamond onto carbonized poly (divinylbenzene) microspheres to create superficially porous particles for HPLC. Many interesting classes of molecules have been separated with these particles, including various cannabinoids, pesticides, tricyclic antidepressants, etc. Third, we have developed new materials for SPME by sputtering silicon onto cylindrical fiber substrates in a way that creates shadowing of the incoming flux so that materials with high porosity are obtained. These materials are currently outperforming their commercial counterparts. Throughout this work, the new materials we have made have been characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, transmission electron microscopy, etc.

  • PDF

THE TWO-STEP RAPID THERMAL ANNEALING EFFECT OF THE PREPATTERNED A-SI FILMS (프리 패턴한 비정질 실리콘 박막의 two-step RTA 효과)

  • Lee, Min-Cheol;Park, Kee-Chan;Choi, Kwon-Young;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1333-1336
    • /
    • 1998
  • Hydrogenated amorphous silicon(a-Si:H) films which were deposited by plasma enhanced chemical deposition(PECVD) have been recrystallized by the two-step rapid thermal annealing(RTA) employing the halogen lamp. The a-Si:H films evolve hydrogen explosively during the high temperature crystallzation step. In result, the recrystallized polycrystalline silicon(poly-Si) films have poor surface morphology. In order to avoid the hydrogen evolution, the films have undergone the dehydrogenation step prior to the crystallization step Before the RTA process, the active area of thin film transistors (TFT's) was patterned. The prepatterning of the a-Si:H active islands may reduce thermal damage to the glass substrate during the recrystallization. The computer generated simulation shows the heat propagation from the a-Si:H islands into the glass substrate. We have fabricated the poly-Si TFT's on the silicon wafers. The maximun ON/OFF current ratio of the device was over $10^5$.

  • PDF

Design and Fabrication of Movable Micro-Fersnel Lens on XY-stage (XY-Stage에 의해 정적인 변위를 갖는 미세 프레넬 렌즈(Micro-Fresnel Lens)의 설계 및 제작)

  • Kim, Che-Heung;Ahn, Si-Hong;Lim, Hyung-Taek;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2515-2517
    • /
    • 1998
  • The micro fresnel lens(MFL) was modeled and fabricated on a XY-stage electrostatically driven by comb actuator. The modeled MFL was approximated as a step shape with 4-phase and 4-zone plate. The focal length and diameter of the MFL is 20mm and 912${\mu}m$, respectively. The XY-stage suspending the MFL is designed to generate a large static displacement up to about 20${\mu}m$. On SOI substrates, we first fabricated MFL using the RIE(reactive Ion etching) technology and then patterned and etched bulk silicon to make XY-stage. After the fabrication of all structures on top side of the SOI substrates. $Si_3N_4$ was deposited for passivation of all structures using PECVD(plasma enhanced chemical vapor deposition). All the MFL systems width comb drive actuator were released by KOH etching from the bottom side of the SOI wafer using double-sided alignment technique. In fabrication of MFL, a dry etching conditions is established in order to improve surface roughness and to control the etched depth.

  • PDF