• Title/Summary/Keyword: Patterned chemical surface

Search Result 97, Processing Time 0.026 seconds

Review on Antifouling Membranes with Surface-Patterning for Water Purification (물 정화를 위한 표면패턴화된 내오염성 분리막에 대한 총설)

  • Aung, Hein Htet;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.161-169
    • /
    • 2021
  • As clean water continues to be a demand in this global water crisis, development of separation membrane technology for water purification becomes a necessity. The effectiveness of separation membranes is hindered in the water crisis due to fouling of membranes. To address this problem, the application of patterns on flat membranes via various methods have been recently studied and experimented. Patterned membranes have shown to not only reduce the fouling effects of membranes, but also increase the fluxes depending on the method and materials used. Each application has shown benefits that include, but not limited to, enhanced surface area, higher pure-water permeability, and increased number of filtration cycles. In this review, the effects of patterned membranes against antifouling is summarized and discussed.

Facet Growth of InGaAs on GaAs(100) by Chemical Beam Epitaxy Using Unprecracked Monoethylarsine (GaAs(100) 기판에 사전 열분해하지 않은 Monoethylarsine을 사용하는 Chemical Beam Epitaxy방법에 의한 InGaAs박막의 Facet 성장에 관한 연구)

  • 김성복;박성주;노정래;이일항
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.199-205
    • /
    • 1996
  • InGaAs eqitaxial layers have been selectively grown on patterned GaAs(100) substrates by chemical beam epitaxy (CBE) using triethylgallium (TEGa), trimethylindium (TMIn), and unprecracked monoethylarsine (MEAs). Facet growth of InGaAs epilayers has also been investigated at the various growth temperatures and Si4N4 dielectric pattern directions. In [011] jirection of mask, the change from (311), (377) and (111) facets to (311) facet with increasing growth temperature was observed. In [011] direction, however, the change from (011) and (111) facets to (111) facet with increasing growth temperature was observed. These results are attributed to the sidewall growth caused by different surface migration lengths of reactants. The formation of U-shaped (100) top surface is also discussed in terms of dangling bond model.

  • PDF

Nano-Scale Immobilization of Antibody for the Construction of Immunosensor

  • Cho, Il-Hoon;Paek, Se-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.701-705
    • /
    • 2003
  • Performance of an immunosensor can usually be assessed in terms of its analytical sensitivity and specificity. Sensitivity, i.e., the detection limit of analyte, is particularly determined by the amount of analyte molecules bound to the capture antibody immobilized onto a solid surface. In order to increase the binding complexes, we have investigated an immobilization method of antibody allowing for a molecular arrangement of the protein on a selective surface of a nano-patterned solid substrate. This has not been accomplished only by a surface treatment with a chemical, but also by fragmentation of immunoglobulin. Such approach would offer a protocol of antibody immobilization for the construction of nano-immunosensor and eventually improve the sensitivity of detection.

  • PDF

Surface Topographical Cues for Regulating Differentiation of Human Neural Stem Cells

  • Yang, Kisuk;Lee, Jong Seung;Lee, Jaehong;Cheong, Eunji;Lee, Taeyoon;Im, Sung Gap;Cho, Seung-Woo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.122.2-122.2
    • /
    • 2016
  • Surface topographical cues has been highlighted to control the fate of neural stem cells (NSCs). Herein we developed a hierarchically patterned substrate (HPS) platform for regulating NSC differentiation. The HPS induced cytoskeleton alignment and highly activated focal adhesion in hNSCs as indicated by enhanced expression of focal adhesion proteins such as focal adhesion kinase (FAK) and vinculin. hNSCs cultured on HPS exhibited enhanced neuronal differentiation compared to flat group. We also developed a graphene oxide (GO)-based hierarchically patterned substrates (GPS) that promote focal adhesion formation and neuronal differentiation of hNSCs. Enhanced focal adhesion and differentiation of hNSCs on the HPS was reversed by blocking the ${\beta}1$ integrin binding and mechanotransduction-associated signals including Rho-associated protein kinase (ROCK) and extracellular-regulated kinase (ERK) pathway, which may suggest a potential mechanism of beneficial effects of HPS. In addition, hNSCs on the HPS differentiated into functional neurons exhibiting sodium currents and action potentials as confirmed by whole cell patch-clamping analysis. The hierarchical topography can direct differentiation of NSCs towards functional neurons, and therefore would be an important element for the design of functional biomaterials for neural tissue regeneration applications.

  • PDF

Investigation on Suppression of Nickel-Silicide Formation By Fluorocarbon Reactive Ion Etch (RIE) and Plasma-Enhanced Deposition

  • Kim, Hyun Woo;Sun, Min-Chul;Lee, Jung Han;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • Detailed study on how the plasma process during the sidewall spacer formation suppresses the formation of silicide is done. In non-patterned wafer test, it is found that both fluorocarbon reactive ion etch (RIE) and TEOS plasma-enhanced deposition processes modify the Si surface so that the silicide reaction is chemically inhibited or suppressed. In order to investigate the cause of the chemical modification, we analyze the elements on the silicon surface through Auger Electron Spectroscopy (AES). From the AES result, it is found that the carbon induces chemical modification which blocks the reaction between silicon and nickel. Thus, protecting the surface from the carbon-containing plasma process prior to nickel deposition appears critical in successful silicide formation.

Microcontact Printing of Biotin for Selective Immobilization of Streptavidin-fused Proteins and SPR Analysis

  • Lee, Sang-Yup;Park, Jong-Pil;Lee, Seok-Jae;Park, Tae-Jung;Lee, Kyung-Bok;Park, Insung S.;Kim, Min-Gon;Chung, Bong-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.137-142
    • /
    • 2004
  • In this study, a simple procedure is described for patterning biotin on a glass substrate and then selectively immobilizing proteins of interest onto the biotin-patterned surface. Microcontact printing (CP) was used to generate the micropattern of biotin and to demonstrate the selective immobilization of proteins by using enhanced green fluorescent protein (EGFP) as a model protein, of which the C-terminus was fused to a core streptavidin (cSA) gene of Streptomyces avidinii. Confocal fluorescence microscopy was used to visualize the pattern of the immobilized protein (EGFP-cSA), and surface plasmon resonance was used to characterize biological activity of the immobilized EGFP-cSA. The results suggest that this strategy, which consists of a combination of $\mu$CP and cSA-fused proteins. is an effective way for fabricating biologically active substrates that are suitable for a wide variety of applications. one such being the use in protein-protein assays.

Self- and Artificially-Controlled ZnO Nanostructures by MOCVD (MOCVD을 이용하여 자발적 및 인위적으로 제어된 산화아연 나노구조)

  • Kim, Sang-Woo;Fujita, Shizuo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.9-10
    • /
    • 2005
  • We report on the fabrication and characterization of self- and artificially-controlled ZnO nanostructures have been investigated to establish nanostructure blocks for ZnO-based nanoscale device application. Systematic realization of self- and artificially-controlled ZnO nanostructures on $SiO_2/Si$ substrates was proposed and successfully demonstrated utilizing metalorganic chemical vapor deposition (MOCVD) in addition with a focused ion beam (FIB) technique. Widely well-aligned two-dimensional ZnO nanodot arrays ($4{\sim}10^4$ nanodots of 130-nm diameter and 9-nm height over $150{\sim}150{\mu}m^2$ with a period of 750 nm) have been realized by MOCVD on $SiO_2/Si$ substrates patterned by FIB. A low-magnification FIB nanopatterning mode allowed the periodical nanopatterning of the substrates over a large area in a short processing time. Ga atoms incorporated into the surface areas of FIB-patterned nanoholes during FIB engraving were found to play an important role in the artificial control of ZnO, resulting in the production of ZnO nanodot arrays on the FIB-nanopatterned areas. The nanodots evolved into dot clusters and rods with increasing MOCVD growth time.

  • PDF

Characteristic of GaN Growth on the Periodically Patterned Substrate for Several Reactor Configurations (반응로 형상에 따른 주기적으로 배열된 패턴위의 GaN 성장 특성)

  • Kang, Sung-Ju;Kim, Jin-Taek;Pak, Bock-Choon;Lee, Cheul-Ro;Baek, Byung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.225-233
    • /
    • 2007
  • The growth of GaN on the patterned substances has proven favorable to achieve thick, crack-free GaN layers. In this paper, numerical modeling of transport and reaction of species is performed to estimate the growth rate of GaN from tile reaction of TMG(trimethly-gallium) and ammonia. GaN growth rate was estimated through the model analysis including the effect of species velocity, thermal convection and chemical reaction, and thermal condition for the uniform deposition was to be presented. The effect of shape and construction of microscopic pattern was also investigated using a simulator to perform surface analysis, and a review was done on the quantitative thickness and shape in making GaN layer on the pattern. Quantitative analysis was especially performed about the shape of reactor geometry, periodicity of pattern and flow conditions which decisively affect the quality of crystal growth. It was found that the conformal deposition could be obtained with the inclination of trench ${\Theta}>125^{\circ}$. The aspect ratio was sensitive to the void formation inside trench and the void located deep in trench with increased aspect ratio.

Nanoscale Islands of the Self Assembled Monolayer of Alkanethiol

  • Saha, Joyanta K.;Yang, Mino;Jang, Joonkyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3790-3794
    • /
    • 2013
  • Molecular dynamics simulations were performed to study the structure and stability of a nanoscale self-assembled monolayer (SAM) of alkanethiol on a gold (111) surface. The tilt angle and orientational order of the alkyl chains in the SAM island were examined by systematically varying the size of the island. The chain length dependence of the SAM island was examined by considering alkanethiols containing 12, 16, 20, and 24 carbon atoms. The minimum diameter of SAM islands made from 1-tetracosanethiol, 1-ecosanethiol, 1-hexadecanethiol and 1-dodecanethiol were 2.29, 1.9, 4.7 and 4.76 nm, respectively. These set the ultimate resolution that can be patterned by soft nanolithography. As the length of alkanethiol increases, the SAM islands became more ordered in both orientation and conformation of the alkyl chains.

Inkjet-print patterned transparent conductive CNT films

  • Kim, Mun-Ja;Shin, Jun-Ho;Lee, Jong-Hak;Lee, Hyun-Chul;Yoo, Ji-Beom
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1119-1121
    • /
    • 2006
  • Using a chemical radical we modified the surface property of PET substrates. The chemically treated substrate surface improved dispersion of CNTs on substrate and provides suitable adhesion of CNTs to substrate. In addition, an ink-jet printed patterning technique effectively improved the transparency of transparent conductive CNT composite films.

  • PDF