• Title/Summary/Keyword: Pattern vector extraction

Search Result 72, Processing Time 0.02 seconds

Binary classification by the combination of Adaboost and feature extraction methods (특징 추출 알고리즘과 Adaboost를 이용한 이진분류기)

  • Ham, Seaung-Lok;Kwak, No-Jun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.4
    • /
    • pp.42-53
    • /
    • 2012
  • In pattern recognition and machine learning society, classification has been a classical problem and the most widely researched area. Adaptive boosting also known as Adaboost has been successfully applied to binary classification problems. It is a kind of boosting algorithm capable of constructing a strong classifier through a weighted combination of weak classifiers. On the other hand, the PCA and LDA algorithms are the most popular linear feature extraction methods used mainly for dimensionality reduction. In this paper, the combination of Adaboost and feature extraction methods is proposed for efficient classification of two class data. Conventionally, in classification problems, the roles of feature extraction and classification have been distinct, i.e., a feature extraction method and a classifier are applied sequentially to classify input variable into several categories. In this paper, these two steps are combined into one resulting in a good classification performance. More specifically, each projection vector is treated as a weak classifier in Adaboost algorithm to constitute a strong classifier for binary classification problems. The proposed algorithm is applied to UCI dataset and FRGC dataset and showed better recognition rates than sequential application of feature extraction and classification methods.

Aerial Scene Labeling Based on Convolutional Neural Networks (Convolutional Neural Networks기반 항공영상 영역분할 및 분류)

  • Na, Jong-Pil;Hwang, Seung-Jun;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.484-491
    • /
    • 2015
  • Aerial scene is greatly increased by the introduction and supply of the image due to the growth of digital optical imaging technology and development of the UAV. It has been used as the extraction of ground properties, classification, change detection, image fusion and mapping based on the aerial image. In particular, in the image analysis and utilization of deep learning algorithm it has shown a new paradigm to overcome the limitation of the field of pattern recognition. This paper presents the possibility to apply a more wide range and various fields through the segmentation and classification of aerial scene based on the Deep learning(ConvNet). We build 4-classes image database consists of Road, Building, Yard, Forest total 3000. Each of the classes has a certain pattern, the results with feature vector map come out differently. Our system consists of feature extraction, classification and training. Feature extraction is built up of two layers based on ConvNet. And then, it is classified by using the Multilayer perceptron and Logistic regression, the algorithm as a classification process.

EEG Feature Classification for Precise Motion Control of Artificial Hand (의수의 정확한 움직임 제어를 위한 동작 별 뇌파 특징 분류)

  • Kim, Dong-Eun;Yu, Je-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • Brain-computer interface (BCI) is being studied for convenient life in various application fields. The purpose of this study is to investigate a changing electroencephalography (EEG) for precise motion of a robot or an artificial arm. Three subjects who participated in this experiment performed three-task: Grip, Move, Relax. Acquired EEG data was extracted feature data using two feature extraction algorithm (power spectrum analysis and multi-common spatial pattern). Support vector machine (SVM) were applied the extracted feature data for classification. The classification accuracy was the highest at Grip class of two subjects. The results of this research are expected to be useful for patients required prosthetic limb using EEG.

Decoding Brain Patterns for Colored and Grayscale Images using Multivariate Pattern Analysis

  • Zafar, Raheel;Malik, Muhammad Noman;Hayat, Huma;Malik, Aamir Saeed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1543-1561
    • /
    • 2020
  • Taxonomy of human brain activity is a complicated rather challenging procedure. Due to its multifaceted aspects, including experiment design, stimuli selection and presentation of images other than feature extraction and selection techniques, foster its challenging nature. Although, researchers have focused various methods to create taxonomy of human brain activity, however use of multivariate pattern analysis (MVPA) for image recognition to catalog the human brain activities is scarce. Moreover, experiment design is a complex procedure and selection of image type, color and order is challenging too. Thus, this research bridge the gap by using MVPA to create taxonomy of human brain activity for different categories of images, both colored and gray scale. In this regard, experiment is conducted through EEG testing technique, with feature extraction, selection and classification approaches to collect data from prequalified criteria of 25 graduates of University Technology PETRONAS (UTP). These participants are shown both colored and gray scale images to record accuracy and reaction time. The results showed that colored images produces better end result in terms of accuracy and response time using wavelet transform, t-test and support vector machine. This research resulted that MVPA is a better approach for the analysis of EEG data as more useful information can be extracted from the brain using colored images. This research discusses a detail behavior of human brain based on the color and gray scale images for the specific and unique task. This research contributes to further improve the decoding of human brain with increased accuracy. Besides, such experiment settings can be implemented and contribute to other areas of medical, military, business, lie detection and many others.

Optimal Facial Emotion Feature Analysis Method based on ASM-LK Optical Flow (ASM-LK Optical Flow 기반 최적 얼굴정서 특징분석 기법)

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.512-517
    • /
    • 2011
  • In this paper, we propose an Active Shape Model (ASM) and Lucas-Kanade (LK) optical flow-based feature extraction and analysis method for analyzing the emotional features from facial images. Considering the facial emotion feature regions are described by Facial Action Coding System, we construct the feature-related shape models based on the combination of landmarks and extract the LK optical flow vectors at each landmarks based on the centre pixels of motion vector window. The facial emotion features are modelled by the combination of the optical flow vectors and the emotional states of facial image can be estimated by the probabilistic estimation technique, such as Bayesian classifier. Also, we extract the optimal emotional features that are considered the high correlation between feature points and emotional states by using common spatial pattern (CSP) analysis in order to improvise the operational efficiency and accuracy of emotional feature extraction process.

An Implementation of Automatic Genre Classification System for Korean Traditional Music (한국 전통음악 (국악)에 대한 자동 장르 분류 시스템 구현)

  • Lee Kang-Kyu;Yoon Won-Jung;Park Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • This paper proposes an automatic genre classification system for Korean traditional music. The Proposed system accepts and classifies queried input music as one of the six musical genres such as Royal Shrine Music, Classcal Chamber Music, Folk Song, Folk Music, Buddhist Music, Shamanist Music based on music contents. In general, content-based music genre classification consists of two stages - music feature vector extraction and Pattern classification. For feature extraction. the system extracts 58 dimensional feature vectors including spectral centroid, spectral rolloff and spectral flux based on STFT and also the coefficient domain features such as LPC, MFCC, and then these features are further optimized using SFS method. For Pattern or genre classification, k-NN, Gaussian, GMM and SVM algorithms are considered. In addition, the proposed system adopts MFC method to settle down the uncertainty problem of the system performance due to the different query Patterns (or portions). From the experimental results. we verify the successful genre classification performance over $97{\%}$ for both the k-NN and SVM classifier, however SVM classifier provides almost three times faster classification performance than the k-NN.

Optimal EEG Channel Selection by Genetic Algorithm and Binary PSO based on a Support Vector Machine (Support Vector Machine 기반 Genetic Algorithm과 Binary PSO를 이용한 최적의 EEG 채널 선택 기법)

  • Kim, Jun Yeup;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.527-533
    • /
    • 2013
  • BCI (Brain-Computer Interface) is a system that transforms a subject's brain signal related to their intention into a control signal by classifying EEG (electroencephalograph) signals obtained during the imagination of movement of a subject's limbs. The BCI system allows us to control machines such as robot arms or wheelchairs only by imaging limbs. With the exact same experiment environment, activated brain regions of each subjects are totally different. In that case, a simple approach is to use as many channels as possible when measuring brain signals. However the problem is that using many channels also causes other problems. When applying a CSP (Common Spatial Pattern), which is an EEG extraction method, many channels cause an overfitting problem, and in addition there is difficulty using this technique for medical analysis. To overcome these problems, we suggest an optimal channel selection method using a BPSO (Binary Particle Swarm Optimization), BPSO with channel impact factor, and GA. This paper examined optimal selected channels among all channels using three optimization methods and compared the classification accuracy and the number of selected channels between BPSO, BPSO with channel impact factor, and GA by SVM (Support Vector Machine). The result showed that BPSO with channel impact factor selected 2 fewer channels and even improved accuracy by 10.17~11.34% compared with BPSO and GA.

Smoke detection in video sequences based on dynamic texture using volume local binary patterns

  • Lin, Gaohua;Zhang, Yongming;Zhang, Qixing;Jia, Yang;Xu, Gao;Wang, Jinjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5522-5536
    • /
    • 2017
  • In this paper, a video based smoke detection method using dynamic texture feature extraction with volume local binary patterns is studied. Block based method was used to distinguish smoke frames in high definition videos obtained by experiments firstly. Then we propose a method that directly extracts dynamic texture features based on irregular motion regions to reduce adverse impacts of block size and motion area ratio threshold. Several general volume local binary patterns were used to extract dynamic texture, including LBPTOP, VLBP, CLBPTOP and CVLBP, to study the effect of the number of sample points, frame interval and modes of the operator on smoke detection. Support vector machine was used as the classifier for dynamic texture features. The results show that dynamic texture is a reliable clue for video based smoke detection. It is generally conducive to reducing the false alarm rate by increasing the dimension of the feature vector. However, it does not always contribute to the improvement of the detection rate. Additionally, it is found that the feature computing time is not directly related to the vector dimension in our experiments, which is important for the realization of real-time detection.

A Method of Feature Extraction on Motor Imagery EEG Using FLD and PCA Based on Sub-Band CSP (서브 밴드 CSP기반 FLD 및 PCA를 이용한 동작 상상 EEG 특징 추출 방법 연구)

  • Park, Sang-Hoon;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1535-1543
    • /
    • 2015
  • The brain-computer interface obtains a user's electroencephalogram as a replacement communication unit for the disabled such that the user is able to control machines by simply thinking instead of using hands or feet. In this paper, we propose a feature extraction method based on a non-selected filter by SBCSP to classify motor imagery EEG. First, we divide frequencies (4~40 Hz) into 4-Hz units and apply CSP to each Unit. Second, we obtain the FLD score vector by combining FLD results. Finally, the FLD score vector is projected onto the optimal plane for classification using PCA. We use BCI Competition III dataset IVa, and Extracted features are used as input for LS-SVM. The classification accuracy of the proposed method was evaluated using $10{\times}10$ fold cross-validation. For subjects 'aa', 'al', 'av', 'aw', and 'ay', results were $85.29{\pm}0.93%$, $95.43{\pm}0.57%$, $72.57{\pm}2.37%$, $91.82{\pm}1.38%$, and $93.50{\pm}0.69%$, respectively.

A Method to Adjust Cyclic Signal Length Using Time Invariant Feature Point Extraction and Matching(TIFEM) (시불변 특징점 추출 및 정합을 이용한 주기 신호의 길이 보정 기법)

  • Han, A-Hyang;Park, Cheong-Sool;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.111-122
    • /
    • 2010
  • In this study, a length adjustment algorithm for cyclic signals in manufacturing process using Time Invariant Feature point Extraction and Matching(TIFEM) is proposed. In order to precisely compensate the length of cyclic signals which have irregular length in the middle of signal as well as in the full length more feature points are needed. The extracted feature must involve information about the pattern of signal and should have invariant properties on time and scale. The proposed TIFEM algorithm extracts features having the intrinsic properties of the signal characteristics at first. By using those extracted features, feature vector is constructed for each time point. Among those extracted features, the only effective features are filtered and are chosen such as basis for the length adjustment. And then the partial length adjustment is performed by matching feature points. To verify the performance of the proposed algorithm, the experiments were performed with the experimental data mimicking the three kinds of signals generated from the actual semiconductor process.