• Title/Summary/Keyword: Pattern classifier

Search Result 383, Processing Time 0.026 seconds

The Performance Advancement of Test Algorithm for Inner Defects In Semiconductor Packages (반도체 패키지의 내부 결함 검사용 알고리즘 성능 향상)

  • Kim J.Y.;Kim C.H.;Yoon S.U.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.721-726
    • /
    • 2005
  • In this study, researchers classifying the artificial flaws in semiconductor. packages are performed by pattern recognition technology. For this purposes, image pattern recognition package including the user made software was developed and total procedure including ultrasonic image acquisition, equalization filtration, binary process, edge detection and classifier design is treated by Backpropagation Neural Network. Specially, it is compared with various weights of Backpropagation Neural Network and it is compared with threshold level of edge detection in preprocessing method for entrance into Multi-Layer Perceptron(Backpropagation Neural network). Also, the pattern recognition techniques is applied to the classification problem of defects in semiconductor packages as normal, crack, delamination. According to this results, it is possible to acquire the recognition rate of 100% for Backpropagation Neural Network.

  • PDF

Development of an Adaptive Neuro-Fuzzy Techniques based PD-Model for the Insulation Condition Monitoring and Diagnosis

  • Kim, Y.J.;Lim, J.S.;Park, D.H.;Cho, K.B.
    • Electrical & Electronic Materials
    • /
    • v.11 no.11
    • /
    • pp.1-8
    • /
    • 1998
  • This paper presents an arificial neuro-fuzzy technique based prtial discharge (PD) pattern classifier to power system application. This may require a complicated analysis method employ -ing an experts system due to very complex progressing discharge form under exter-nal stress. After referring briefly to the developments of artificical neural network based PD measurements, the paper outlines how the introduction of new emerging technology has resulted in the design of a number of PD diagnostic systems for practical applicaton of residual lifetime prediction. The appropriate PD data base structure and selection of learning data size of PD pattern based on fractal dimentsional and 3-D PD-normalization, extraction of relevant characteristic fea-ture of PD recognition are discussed. Some practical aspects encountered with unknown stress in the neuro-fuzzy techniques based real time PD recognition are also addressed.

  • PDF

Pattern Selection Using the Bias and Variance of Ensemble (앙상블의 편기와 분산을 이용한 패턴 선택)

  • Shin, Hyunjung;Cho, Sungzoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.112-127
    • /
    • 2002
  • A useful pattern is a pattern that contributes much to learning. For a classification problem those patterns near the class boundary surfaces carry more information to the classifier. For a regression problem the ones near the estimated surface carry more information. In both cases, the usefulness is defined only for those patterns either without error or with negligible error. Using only the useful patterns gives several benefits. First, computational complexity in memory and time for learning is decreased. Second, overfitting is avoided even when the learner is over-sized. Third, learning results in more stable learners. In this paper, we propose a pattern 'utility index' that measures the utility of an individual pattern. The utility index is based on the bias and variance of a pattern trained by a network ensemble. In classification, the pattern with a low bias and a high variance gets a high score. In regression, on the other hand, the one with a low bias and a low variance gets a high score. Based on the distribution of the utility index, the original training set is divided into a high-score group and a low-score group. Only the high-score group is then used for training. The proposed method is tested on synthetic and real-world benchmark datasets. The proposed approach gives a better or at least similar performance.

GA-Based Construction of Fuzzy Classifiers Using Information Granules

  • Kim Do-Wan;Lee Ho-Jae;Park Jin-Bae;Joo Young-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.187-196
    • /
    • 2006
  • A new GA-based methodology using information granules is suggested for the construction of fuzzy classifiers. The proposed scheme consists of three steps: selection of information granules, construction of the associated fuzzy sets, and tuning of the fuzzy rules. First, the genetic algorithm (GA) is applied to the development of the adequate information granules. The fuzzy sets are then constructed from the analysis of the developed information granules. An interpretable fuzzy classifier is designed by using the constructed fuzzy sets. Finally, the GA is utilized for tuning of the fuzzy rules, which can enhance the classification performance on the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example, the classification of the Iris data, is provided.

Design of High-Performance Unified Circuit for Linear and Non-Linear SVM Classifications

  • Kim, Soo-Jin;Lee, Seon-Young;Cho, Kyeong-Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.162-167
    • /
    • 2012
  • This paper describes the design of a high-performance unified SVM classifier circuit. The proposed circuit supports both linear and non-linear SVM classifications. In order to ensure efficient classification, a 48x96 or 64x64 sliding window with 20 window strides is used. We reduced the circuit size by sharing most of the resources required for both types of classification. We described the proposed unified SVM classifier circuit using the Verilog HDL and synthesized the gate-level circuit using 65nm standard cell library. The synthesized circuit consists of 661,261 gates, operates at the maximum operating frequency of 152 MHz and processes up to 33.8 640x480 image frames per second.

The Optimal Bispectral Feature Vectors and the Fuzzy Classifier for 2D Shape Classification

  • Youngwoon Woo;Soowhan Han;Park, Choong-Shik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.421-427
    • /
    • 2001
  • In this paper, a method for selection of the optimal feature vectors is proposed for the classification of closed 2D shapes using the bispectrum of a contour sequence. The bispectrum based on third order cumulants is applied to the contour sequences of the images to extract feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to represent two-dimensional planar images, but there is no certain criterion on the selection of the feature vectors for optimal classification of closed 2D images. In this paper, a new method for selecting the optimal bispectral feature vectors based on the variances of the feature vectors. The experimental results are presented using eight different shapes of aircraft images, the feature vectors of the bispectrum from five to fifteen and an weighted mean fuzzy classifier.

  • PDF

Evolutionary Learning of Neural Networks Classifiers for Credit Card Fraud Detection (신용카드 사기 검출을 위한 신경망 분류기의 진화 학습)

  • 박래정
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.400-405
    • /
    • 2001
  • This paper addresses an effective approach of training neural networks classifiers for credit card fraud detection. The proposed approach uses evolutionary programming to trails the neural networks classifiers based on maximization of the detection rate of fraudulent usages on some ranges of the rejection rate, loot minimization of mean square error(MSE) that Is a common criterion for neural networks learning. This approach enables us to get classifier of satisfactory performance and to offer a directive method of handling various conditions and performance measures that are required for real fraud detection applications in the classifier training step. The experimental results on "real"credit card transaction data indicate that the proposed classifiers produces classifiers of high quality in terms of a relative profit as well as detection rate and efficiency.

  • PDF

A Construction of Fuzzy Model for Data Mining

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.209-215
    • /
    • 2003
  • A new GA-based methodology using information granules is suggested for the construction of fuzzy classifiers. The proposed scheme consists of three steps: selection of information granules, construction of the associated fuzzy sets, and tuning of the fuzzy rules. First, the genetic algorithm (GA) is applied to the development of the adequate information granules. The fuzzy sets are then constructed from the analysis of the developed information granules. An interpretable fuzzy classifier is designed by using the constructed fuzzy sets. Finally, the GA are utilized for tuning of the fuzzy rules, which can enhance the classification performance on the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example, the classification of the Iris data, is provided.

Frame Based Classification of Underwater Transient Signal Using MFCC Feature Vector and Neural Network (MFCC 특징벡터와 신경회로망을 이용한 프레임 기반의 수중 천이신호 식별)

  • Lim, Tae-Gyun;Kim, Il-Hwan;Kim, Tae-Hwan;Bae, Keun-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.883-884
    • /
    • 2008
  • This paper presents a method for classification of underwater transient signals using, which employs a binary image pattern of the mel-frequency cepstral coefficients(MFCC) as a feature vector and a neural network as a classifier. A feature vector is obtained by taking DCT and 1-bit quantization for the square matrix of the MFCC sequences. The classifier is a feed-forward neural network having one hidden layer and one output layer, and a back propagation algorithm is used to update the weighting vector of each layer. Experimental results with some underwater transient signals demonstrate that the proposed method is very promising for classification of underwater transient signals.

  • PDF

Design of Fuzzy Model for Data Mining

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.107-113
    • /
    • 2003
  • A new GA-based methodology using information granules is suggested for the construction of fuzzy classifiers. The proposed scheme consists of three steps: selection of information granules, construction of the associated fuzzy sets, and tuning of the fuzzy rules. First, the genetic algorithm (GA) is applied to the development of the adequate information granules. The fuzzy sets are then constructed from the analysis of the developed information granules. An interpretable fuzzy classifier is designed by using the constructed fuzzy sets. Finally, the GA are utilized for tuning of the fuzzy rules, which can enhance the classification performance on the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example, the classification of the Iris data, is provided.