• Title/Summary/Keyword: Pattern Printing

Search Result 360, Processing Time 0.035 seconds

Eco-printing Using Chitosan and Natural Colorants(2) (키토산과 천연색소를 이용한 Eco-Printing(제2보))

  • Kim, Chae-Yeon;Shin, Youn-Sook
    • Textile Coloration and Finishing
    • /
    • v.23 no.3
    • /
    • pp.169-178
    • /
    • 2011
  • The purpose of this study is to develop eco-printing method using natural dyes combined with chitosan treatment to impart various pattern effect on cotton fabric. It was examined whether tone-on-tone pattern effects could be produced by screen printing with chitosan paste and subsequently dip-dyed in natural dye bath. For polychromic colorants, fabrics were pre-mordanted and then screen printed with chitosan, while only chitosan printing treatment was applied for monochromic colorants. Color, dye uptake, washing, light and rubbing fastnesses of printed fabrics were measured in relation to the presence of chitosan printing. Pre-mordanting and chitosan printing treatment were applied to such polychromic colorants as madder, sappanwood, onion and cochineal. Also, printing pattern formation on fabrics was evaluated by differences in dye uptake and color. The results suggested that madder, onion and cochineal were effective on pattern formation. Regarding sappanwood, since dye uptake was increased only by pre-mordanting without chitosan printing treatment, there was little color difference and thus patterns were not clearly distinguished. Chitosan printing treatment tended to increase washing, light and rubbing fastnesses of dyed fabrics with polychromic colorants. Chitosan printing treatment was applied to monochromic colorants such as chlorophyll, gardenia and indigo and the effect of printing formation was examined according to the difference in dye uptake. Among monochromic dyes tried, chlorophyll was effective and chitosan printing improved washing and light fastnesses.

Development of Roll-to-Roll Printing System for Fine Line-width Printing (미세 선폭 프린팅을 위한 롤투롤 장비 개발)

  • Kim C.H.;Ryu B.S.;Lim K.J.;Lee M.H.;Lee T.M.;Youn S.N.;Choi B.O.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.583-584
    • /
    • 2006
  • Printing technology has begun to get into the spotlight in many ways due to the low cost effectiveness to existent semi-conductor process. It also has very useful application areas, not only paper printing but also patterning for LCD color tilter, Photovoltaic patterning, RFID antenna, OLED, and so on. In this study, an apparatus of gravure offset printing was developed for fine line width printing. The pattern was composed of $20{\mu}m$ size of continuous lines of which pitch size was $40{\mu}m$. The printed pattern shows that it is possible to make around $20{\mu}m$ line-width printing pattern. The roll-to-roll printing system for fine line-width printing based on primary experiment is presented. For testing of multi-layer printing, the system was designed to be capable of printing two different materials from each printing unit using gravure-offset printing method and have a function of alignment of two printed materials.

  • PDF

Investigation of Conductive Pattern Line for Direct Digital Printing (디지털 프린팅을 위한 전도성 배선에 관한 연구)

  • Kim, Yong-Sik;Seo, Shang-Hoon;Lee, Ro-Woon;Kim, Tae-Hoon;Park, Jae-Chan;Kim, Tae-Gu;Jeong, Kyoung-Jin;Yun, Kwan-Soo;Park, Sung-Jun;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.502-502
    • /
    • 2007
  • Current thin film process using memory device fabrication process use expensive processes such as manufacturing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as PCB, FCPB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line for the electronic circuit board using metal ink contains Ag nano-particles. Metal lines are fabricated by two types of printing methods. One is a conventional printing method which is able to quick fabrication of fine pattern line, but has various difficulties about thick and high resolution DPI(Dot per Inch) pattern lines because of bulge and piling up phenomenon. Another(Second) methods is sequential printing method which has a various merits of fabrication for fine, thick and high resolution pattern lines without bulge. In this work, conductivities of metal pattern line are investigated with respect to printing methods and pattern thickness. As a result, conductivity of thick pattern is about several un.

  • PDF

A Study on Tensile Strength Dependent on Variation of Infill Pattern and Density of PLA+ Material Using 3D Printing (3D 프린팅을 이용한 P LA+ 소재의 채움 패턴 및 밀도 변화에 따른 인장강도 연구)

  • Na, D.H.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.281-289
    • /
    • 2022
  • Presently, 3D printers manufactured by material extrusion are economical and easy to use, so they are being used in various fields. However, this study conducted a tensile test on the infill pattern and density of the PLA+ material, due to the limitations of long printing time as well as low mechanical strength. The infill area for the infill density change was measured, using a vision-measuring machine for four infill patterns (concentric, zigzag, honeycomb, and cross) in which the nozzle path was the same for each layer. The tensile strength/weight[MPa/g] and tensile strength/printing time[MPa/min] of the tensile specimens were analyzed. In this study, efficient infill density and patterns are suggested, for cost reduction and productivity improvement. Consequently, it was confirmed that the infill area and infill percentage of the four patterns, were not constant according to the infill pattern. And the tensile strength of the infill density 40% of the honeycomb pattern and infill density 20% of the cross pattern, tended to highly consider the weight and printing time. Honeycomb and cross patterns could reduce the weight of the tensile specimen by 19.11%, 28.07%, as well as the printing time by 29.56%, 52.25%. Tensile strength was high in the order of concentric, zigzag, honeycomb, and cross patterns, considering the weight and printing time.

Roll-to-Roll Gravure Offset Printing System for Printed Electronics (인쇄전자를 위한 롤투롤 그라비아 옵셋 인쇄 장비)

  • Kim, Chung-Hwan;Choi, Byung-Oh;Ryu, Byung-Soon;Lim, Kyu-Jin;Lee, Myung-Hoon;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.461-466
    • /
    • 2007
  • There has been a great interest in printing technology as a low cost and mass production method for the application of printed electronics such as printed TFT, solar cell, RFID Tag, printed battery, and so on. In this study, apparatuses of gravure-offset printing are developed for fine line-width/gap printing and examining pattern distortion occurred in gravure-offset printing process. The fine line-width/gap pattern shows that it is possible to make around 20 micro-meter line-width/gap printing patterns. Pattern distortion is modeled, and the amount and shape of the distortion are calculated by using commercial FEM code. The roll-to-roll printing system under development consists of unwinder/rewinder, two printing units, one coating unit, drying units, guiding unit, vision system, and other auxiliary devices. For multi-layer printing, the system is designed to be capable of printing two different materials.

  • PDF

Automatic Pattern Setting System Reacting to Customer Design

  • Yuan, Ying;Huh, Jun-Ho
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1277-1295
    • /
    • 2019
  • With its technical development, digital printing is being universally introduced to the mass production of clothing factories. At the same time, many fashion platforms have been made for customers' participation using digital printing, and a tool is provided in platforms for customers to make designs. However, there is no sufficient solution in the production stage for automatically converting a customer's design into a file before printing other than designating a square area for the pattern designed by the customer. That is, if 30 different designs come in from customers for one shirt, designers have to do the work of reproducing the design on the clothing pattern in the same location and in the same angle, and this work requires a great deal of manpower. Therefore, it is necessary to develop a technology which can let the customer make the design and, at the same time, reflect it in the clothing pattern. This is defined in relation to the existing clothing pattern with digital printing. This study yields a clothing pattern for digital printing which reflects a customer's design in real time by matching the diagram area where a customer designs on a given clothing model and the area where a standard pattern reflects the customer's actual design information. Designers can substitute the complex mapping operation of programmers with a simple area-matching operation. As there is no limit to clothing designs, the variousfashion design creations of designers and the diverse customizing demands of customers can be satisfied at low cost with high efficiency. This is not restricted to T-shirts or eco-bags but can be applied to all woven wear, including men's, women's, and children's clothing, except knitwear.

Micro Pattern Screen Printing (미세 패턴 스크린 프린팅)

  • Choi Y.J.;Jung K.I.;Lee T.M.;Kim Y.S.;Kim K.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.589-590
    • /
    • 2006
  • Recently, research for the micro printing technology has begun to get into the spotlight. It is due to the superior price competitiveness to existent semi-conductor process for manufacturing some parts of display unit, electronic paper, RF-ID information device, and so on. This paper present screen printing process not for paper publication but for parts of electronics such as PDP wall, LCD CF, and so on. There are two major issues. The first one is how to get a fine and even line pattern. The other one is how to get the same patterns in large area. In this research, we present the design, equipment, and process control of screen printing in order to overcome these issues.

  • PDF

A Study on Tensile Strength According to Various Output Conditions of PLA+ Materials Using 3D Printing (3D 프린팅을 이용한 PLA+ 소재의 다양한 출력 조건에 따른 인장강도에 대한 연구)

  • Na, D.H.;Kim, S.G.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.89-95
    • /
    • 2022
  • 3D printing products manufactured by material extrusion are used in many industrial fields recently. However, these products are difficult to use in the field due to their low tensile strengths. In order to solve this problem, research on improving the tensile strength of the output using a 3D printer has been continuously conducted. In this study, we performed a tensile test using Universal Testing Machine according to infill pattern, nozzle temperature, bed temperature, and printing speed conditions. Results revealed that tensile specimen of concentric shape had the highest tensile strength in infill pattern condition and that the tensile strength increased linearly with increasing nozzle and bed temperatures. However, the tensile strength decreased with increasing printing speed. Consequently, we confirmed that tensile strength could be increased and decreased depending on output conditions of 3D printing.

Pattern Characteristic by Electrostatic Field Induced Drop-On-Demand Ink-jet Printing

  • Choi, J.Y.;Kim, Y.J.;Son, S.U.;Kim, Y.M.;Lee, S.H.;Byun, D.Y.;Ko, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.451-454
    • /
    • 2007
  • This paper presents the pattern characteristic using the electrostatic drop-on-demand ink-jet printing system. In order to achieve the pattern characteristic of electrostatic inkjet printing, the capillary inkjet head system is fabricated using capillary tube, Pt wire and electrode, and is packaged by acrylic board for the accurate alignment between wire and electrode-hole. The applied DC voltage of 1.4 $\sim$ 2.0 kV used for the observation of electrostatic droplet ejection. Electrostatic droplet ejection is directly observed using a high-speed camera. For investigated pattern characteristic, conductive inkjet silver ink used. The higher voltage has a good condition which has micro dripping mode. Also, the droplet size decreases with increasing the supplied DC voltage. This paper shows the pattern which is formed by about 300um. Also, capillary inkjet head system will be applied industrial area comparing conventional electrostatic inkjet head system.

  • PDF

Historical Perspective of Calico Printing Pattern (캘리코 프린팅 패턴에 관한 역사적 고찰)

  • 구희경
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.5 no.3
    • /
    • pp.89-97
    • /
    • 2003
  • This study is to review the development of calico printing pattern design for fabric through historical perspective. Calico is a cotton cloth named from Calicut, a city of India. It was first brought to England by the East India company in 1621. Although the name is generally given and plain white cotton cloth, and in America it is applied to small-scale printed cottons, today it applies to indian cotton cloth, coarse or fine, woven with colored geometrical large-scale and small-scale patterns, painted or printed. Therefore this paper proposes the classification and feature extraction of calico printing pattern from the early of 16th century to 21th century. The results of this study can be effectively applied to develop competitive calico pattern design in domestic cotton textile industry.

  • PDF