• Title/Summary/Keyword: Pattern Fabrication

Search Result 711, Processing Time 0.03 seconds

Comparison of the fit of the coping pattern constructed by manual and CAD/CAM, depending on the margin of the abutment tooth (지대치 변연 형태에 따른 수작업과 CAD/CAM으로 제작한 coping 패턴의 적합도 비교)

  • Han, Min-soo;Kwon, Eun-Ja;Chio, Esther;Kim, Si-chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6611-6617
    • /
    • 2015
  • The purpose of this study is to compare the marginal and internal fit of metal and zirconia coping which is fabricated by manual and CAD/CAM(Computer Aided Design/Computer Aided Manufacturing). The model is prepared with Urethane material and two abutment teeth are fabricated with a knife and chamfer margin. Silicon replica technique is used to measure the marginal fit of manually fabricated and the CAD/CAM coping. Internal fitting level is measured with a microscope and the image is captured with a CCD camera. The distance between abutment teeth and coping is measured with a callibrated image analyzer software; marginal opening (MO), marginal gap (MG), internal gap (IG) at maximum curvature area, axial gap (AG), and occlusal gap (OG). Two-way ANOVA test is applied to compare fabrication technique and to analysis of abutment pattern. In addition, one-way ANOVA and Scheffe's test is used to analyze each parameter of the test. The result shows that the fit is < $120{\mu}m$ except OG of CAD/CAM and MO of knife margin. The CAD/CAM fabricated coping showed higher fit level at chamfer margin. However, knife margin showed better fitness compared to chamfer margin at MG. AG showed the minimum dimension with a constant result (< $38{\mu}m$).

Fabrication and Characterization of an Antistiction Layer by PECVD (plasma enhanced chemical vapor deposition) for Metal Stamps (PECVD를 이용한 금속 스탬프용 점착방지막 형성과 특성 평가)

  • Cha, Nam-Goo;Park, Chang-Hwa;Cho, Min-Soo;Kim, Kyu-Chae;Park, Jin-Goo;Jeong, Jun-Ho;Lee, Eung-Sug
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.225-230
    • /
    • 2006
  • Nanoimprint lithography (NIL) is a novel method of fabricating nanometer scale patterns. It is a simple process with low cost, high throughput and resolution. NIL creates patterns by mechanical deformation of an imprint resist and physical contact process. The imprint resist is typically a monomer or polymer formulation that is cured by heat or UV light during the imprinting process. Stiction between the resist and the stamp is resulted from this physical contact process. Stiction issue is more important in the stamps including narrow pattern size and wide area. Therefore, the antistiction layer coating is very effective to prevent this problem and ensure successful NIL. In this paper, an antistiction layer was deposited and characterized by PECVD (plasma enhanced chemical vapor deposition) method for metal stamps. Deposition rates of an antistiction layer on Si and Ni substrates were in proportion to deposited time and 3.4 nm/min and 2.5 nm/min, respectively. A 50 nm thick antistiction layer showed 90% relative transmittance at 365 nm wavelength. Contact angle result showed good hydrophobicity over 105 degree. $CF_2$ and $CF_3$ peaks were founded in ATR-FTIR analysis. The thicknesses and the contact angle of a 50 nm thick antistiction film were slightly changed during chemical resistance test using acetone and sulfuric acid. To evaluate the deposited antistiction layer, a 50 nm thick film was coated on a stainless steel stamp made by wet etching process. A PMMA substrate was successfully imprinting without pattern degradations by the stainless steel stamp with an antistiction layer. The test result shows that antistiction layer coating is very effective for NIL.

A STUDY ON THE PHYSICAL PROPERTIES OF GLASS IONOMER CEMENT FOR RESTORATIVE FILLING USING VISIBLE LIGHT POLYMERIZATION (가시광선중합화에 따른 충전용 Glass Ionomer Cement의 물리적 성질에 관한 연구)

  • Shin, Dong-Hoon;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.2
    • /
    • pp.307-330
    • /
    • 1992
  • The aim of this study was to investigate the physical properties of visible light curing Glass Ionomer cement for restorative esthetic filling. The control group was the autopolymerizing GC Fuji II Glass Ionomer cement (2.2: 1 P/L ratio) and the experimental groups were made by following procedure. To induce the polymerization by visible light, the powder of GC Fuji II GI cement and the liquid of Vitrabond for base & liner were mixed in an amalgam capsule with 2.5:1, 3.0:1, 3.5:1 P/L ratio (% wt/wt). After fabrication of specimens, compressive strength, fracture toughness ($K_{IC}$) Scanning Electron Microscope and X-ray Diffraction, water-leachable content, marginal leakage and surface roughness were studied. The results were as follows: 1. Only experimental No. 1 group (visible light curing) showed less compressive strength than control group 1 hour after curing. Strength was increased with aging in all groups, so the compressive strength of light curing groups was no less than that of autopolymerizing group after 3 weeks. 2. Experimental No.3 group (visible light curing) was inferior to No.2 group (visible light curing) in fracture resistance but light curing groups were more resistant to fracture than autopolymerizing group and showed ductile fracture pattern as compared with the brittle fracture pattern of autopolymerizing group. 3. From scanning electron microscopic image, various sized unreacted powder particles, surrounded by silica gel, were embedded in polysalt matrix. Light curing groups showed little crack and more dense unreacted particles than autopolymerizing group. 4. From X-ray diffraction analysis, GC Fuji II Glass Ionomer cement powder and all groups showed glassy appearance but light curing groups seemed to be more intensive in crystaline than autopolymerizing group. S. The most significant dissolution was shown in early setting period in all group. Light curing groups were dissolved less than autopolymerizing group. 6. Marginal leakage was not different significantly in case of cavity margin composed of same tooth structure (ex. only enamel margin, only dentin margin) but much more leakage was shown in dentin/cementum margin than enamel margin. In only case of only enamel margin, light curing groups were superior to autopolymerizing group. 7. All groups showed relatively smooth surface, which irregularity was less than $1{\mu}m$. Light curing groups were smoother than autopolymerizing group.

  • PDF

Fabrication and mechanical properties of $Al/Al_2O_3$ composites by reactive metal penetration method (반응 금속 침투법에 의한 $Al/Al_2O_3$복합체의 제조 및 기계적 특성)

  • 윤영훈;홍상우;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.6
    • /
    • pp.239-245
    • /
    • 2001
  • $Al/Al_2O_3$composites were prepared from the reaction of mullite preforms and amorphous silica in aluminum melt at $1100^{\circ}C$ for 5 hrs. The chemical reaction between mullite preform and aluminum melt has formed the interconnected microstructure. The metal content of $Al/Al_2O_3$composite was controlled with the variable of the apparent porosity according to the sintering temperature of mullite preforms; $1600^{\circ}C$,$ 1625^{\circ}C$, $1650^{\circ}C$ and $1700^{\circ}C$, the mechanical properties of $Al/Al_2O_3$composite were investigated upon the content of Al. The mullite preform sintered above $1600^{\circ}C$ showed the chemical reaction with the penetrated Al melt, but the mullite sintered at $1600^{\circ}C$ didnt react with aluminum melt owing to the non-wetting of Al melt/mullite preform. The influences of penetration direction on the mechanical properties of composites were considered with the two different models of the perpendicular pattern and the parallel pattern to the direction of Al melt penetration. With the increase of Al metal penetration content, the fracture strength of $Al/Al_2O_3$composite decreased and the fracture toughness of composite increased. The microstructure of $Al/Al_2O_3$composite was determined by the direction of metal penetration, but the fracture strength and fracture toughness of composite didnt show the dependence on metal penetration direction.

  • PDF

Fabrication of Printed Graphene Pattern Via Exfoliation and Ink Formulation of Natural Graphite (천연흑연 박리를 통한 그래핀 잉크 생산 및 프린팅)

  • Gyuri, Kim;Yeongwon, Kwak;Ho Young, Jun;Chang-Ho, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.293-300
    • /
    • 2022
  • The remarkable mechanical, electrical, and thermal properties of graphene have recently sparked tremendous interest in various research fields. One of the most promising methods to produce large quantities of graphene dispersion is liquid-phase exfoliation (LPE) which utilizes ultrasonic waves or shear stresses to exfoliate bulk graphite into graphene flakes that are a few layers thick. Graphene dispersion produced via LPE can be transformed into graphene ink to further boost graphene's applications, but producing high-quality graphene more economically remains a challenge. To overcome this shortcoming, an advanced LPE process should be developed that uses relatively cheap natural graphite as a graphene source. In this study, a flow-LPE process was used to exfoliate natural graphite to produce graphene that was three times cheaper and seven times larger than synthetic graphite. The optimal exfoliation conditions in the flow-LPE process were determined in order to produce high-quality graphene flakes. In addition, the structural and electrical properties of the flakes were characterized. The electrical properties of the exfoliated graphene were investigated by carrying out an ink formulation process to prepare graphene ink suitable for inkjet printing, and fabricating a printed graphene pattern. By utilizing natural graphite, this study offers a potential protocol for graphene production, ink formulation, and printed graphene devices in a more industrial-comparable manner.

Surface Patterning and Characterization of Food Packaging Films Using Femtosecond Laser (펨토초 레이저를 이용한 식품포장 필름의 표면 패터닝 및 특성)

  • Youngjin Cho
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.111-118
    • /
    • 2023
  • In this study, the feasibility of laser patterning on the surface of food packaging polymer film was confirmed, and the surface patterning process conditions of femtosecond laser were established. In addition, it was proved that the surface properties of the film can be changed and controlled through the fabrication of various patterned films on the surface of food packaging films such as HDPE, PP, and PET. Various patterned surfaces, including large-scale circular patterns induced by a single femtosecond laser pulse, roughness patterns achieved by overlapping single pulses by 30%, straight line patterns, roughness patterns obtained by overlapping straight line patterns, and grid patterns formed by intersecting straight line patterns were fabricated. The characteristics of the patterned HDPE, PP, and PET films, based on the surface pattern structure and size, were analyzed using SEM, AFM, and contact angle measurements. Compared to the surface of each control film without femtosecond laser patterning, the contact angles of the surfaces of large-area circular patterning HDPE and PP films, large-area roughness patterning HDPE and PP films by overlapping 30% of single pulses, and large-area roughness patterning PET film by overlapping rectilinear patterning were in the range of 27.1-37.5 degree. This indicated that the HDPE, PP, and PET films became more hydrophilic after patterning. On the other hand, the HDPE film patterned with a large-scale grid pattern exhibited a contact angle of 120.4 degree, indicating that the HDPE film became more hydrophobic after patterning. Therefore, films that have been changed to hydrophilic surfaces through patterning can be used in anti-fouling applications where proteins, cells, viruses, and other food materials do not adhere or are easily detached. In addition, if a superhydrophobic surface of 150 degrees or more is fabricated through more precise lattice patterning in the future, it will be possible to use it for superhydrophobic surface applications such as self-cleaning.

Numerical Investigation of Micro Thermal Imprint Process of Glassy Polymer near the Glass Transition Temperature (열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링과 해석)

  • Lan, Shuhuai;Lee, Soo-Hun;Lee, Hye-Jin;Song, Jung-Han;Sung, Yeon-Wook;Kim, Moo-Jong;Lee, Moon-G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.45-52
    • /
    • 2009
  • The research on miniature devices based on non-silicon materials, in particular polymeric materials has been attracting more and more attention in the research field of the micro/nano fabrication in recent years. Lost of applications and many literatures have been reported. However, the study on the micro thermal imprint process of glassy polymer is still not systematic and inadequate. The aim of this research I to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature (Tg). An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model form the test data. As a result, the feasibility of the established viscoelastic model for PC near Tg was confirmed and this material model can be used in FE analysis for the prediction and improvement of the micro thermal imprint process for pattern replication.

  • PDF

An internal multi-band antenna for mobile handset using two slots (두 개의 슬롯을 이용한 단말기용 다중대역 내장형 안테나)

  • Ahn, Sang-Kwon;Choi, Sunho;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.61-66
    • /
    • 2014
  • This paper describes the design, fabrication, and measurement of a compact hexa-band coupling antenna for 4G mobile handset using a small element with two slots. In order to obtain sufficient bandwidth (LTE700, GSM850, GSM900, GSM1800, GSM1900, UMTS) with a Voltage Standing Wave Ratio $(VSWR){\leq}3:1$, two slots are inserted in the small element, and coupling patch is used. The measured result of the fabricated antenna provides 410MHz bandwidth form 0.688 to 1.098GHz and 643 MHz bandwidth form 1.607 to 2.250GHz (${\leq}VSWR 3:1$) with the gain ranging from -0.52 to 4.68 dBi. Also, a good radiation pattern is achieved within the hexa-band (0.698-0.960GHz and 1.710-2.170GHz) range.

Fabrication of Ordered One-Dimensional Silicon Structures and Radial p-n Junction Solar Cell

  • Kim, Jae-Hyun;Baek, Seong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.86-86
    • /
    • 2012
  • The new approaches for silicon solar cell of new concept have been actively conducted. Especially, solar cells with wire array structured radial p-n junctions has attracted considerable attention due to the unique advantages of orthogonalizing the direction of light absorption and charge separation while allowing for improved light scattering and trapping. One-dimenstional semiconductor nano/micro structures should be fabricated for radial p-n junction solar cell. Most of silicon wire and/or pillar arrays have been fabricated by vapour-liquid-solid (VLS) growth because of its simple and cheap process. In the case of the VLS method has some weak points, that is, the incorporation of heavy metal catalysts into the growing silicon wire, the high temperature procedure. We have tried new approaches; one is electrochemical etching, the other is noble metal catalytic etching method to overcome those problems. In this talk, the silicon pillar formation will be characterized by investigating the parameters of the electrochemical etching process such as HF concentration ratio of electrolyte, current density, back contact material, temperature of the solution, and large pre-pattern size and pitch. In the noble metal catalytic etching processes, the effect of solution composition and thickness of metal catalyst on the etching rate and morphologies of silicon was investigated. Finally, radial p-n junction wire arrays were fabricated by spin on doping (phosphor), starting from chemical etched p-Si wire arrays. In/Ga eutectic metal was used for contact metal. The energy conversion efficiency of radial p-n junction solar cell is discussed.

  • PDF

Fabrication of Optically Active Nanostructures for Nanoimprinting

  • Jang, Suk-Jin;Cho, Eun-Byurl;Park, Ji-Yun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.393-393
    • /
    • 2012
  • Optically active nanostructures such as subwavelength moth-eye antireflective structures or surface enhanced Raman spectroscopy (SERS) active structures have been demonstrated to provide the effective suppression of unwanted reflections as in subwavelength structure (SWS) or effective enhancement of selective signals as in SERS. While various nanopatterning techniques such as photolithography, electron-beam lithography, wafer level nanoimprinting lithography, and interference lithography can be employed to fabricate these nanostructures, roll-to-roll (R2R) nanoimprinting is gaining interests due to its low cost, continuous, and scalable process. R2R nanoimprinting requires a master to produce a stamp that can be wrapped around a quartz roller for repeated nanoimprinting process. Among many possibilities, two different types of mask can be employed to fabricate optically active nanostructures. One is self-assembled Au nanoparticles on Si substrate by depositing Au film with sputtering followed by annealing process. The other is monolayer silica particles dissolved in ethanol spread on the wafer by spin-coating method. The process is optimized by considering the density of Au and silica nano particles, depth and shape of the patterns. The depth of the pattern can be controlled with dry etch process using reactive ion etching (RIE) with the mixture of SF6 and CHF3. The resultant nanostructures are characterized for their reflectance using UV-Vis-NIR spectrophotometer (Agilent technology, Cary 5000) and for surface morphology using scanning electron microscope (SEM, JEOL JSM-7100F). Once optimized, these optically active nanostructures can be used to replicate with roll-to-roll process or soft lithography for various applications including displays, solar cells, and biosensors.

  • PDF