• Title/Summary/Keyword: Patnaik's Values

Search Result 4, Processing Time 0.018 seconds

Computation of Noncentral F Probabilities using multilayer neural network (다층 신경 망을 이용한 비중심F분포 확률계산)

  • Gu, Sun-Hee
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.271-276
    • /
    • 2002
  • The test statistic in ANOVA tests has a single or doubly noncentral F distribution and the noncentral F distribution is applied to the calculation of the power functions of tests of general linear hypotheses. Although various approximations of noncentral F distribution are suggested, they are troublesome to compute. In this paper, the calculation of noncentral F distribution is applied to the neural network theory, to solve the computation problem. The neural network consists of the multi-layer perceptron structure and learning process has the algorithm of the backpropagation. Using fables and figs, comparisons are made between the results obtained by neural network theory and the Patnaik's values. Regarding of accuracy and calculation, the results by neural network are efficient than the Patnaik's values.

Computation of Noncentral F Probabilities using Neural Network Theory (신경망이론을 이용한 비중심 F분포 확률계산)

  • 구선희
    • Journal of the Korea Society of Computer and Information
    • /
    • v.1 no.1
    • /
    • pp.83-94
    • /
    • 1996
  • The test statistic in ANOVA tests has a single or doubly noncentral F distribution and the noncentral F distribution is applied to the calculation of the power functions of tests of general linear hypotheses. In this paper. the evaluation of the cumulative function of the single noncentral F distribution is applied to the neural network theory. The neural network consists of the multi-layer perceptron structure and learning process has the algorithm of the backpropagation. Numerical comparisons are made between the results obtained by neural network theory and the Patnaik's values.

  • PDF

Strain energy release rates in the curved spar wingskin joints with pre-embedded delaminations

  • P.K. Mishra;A.K. Pradhan;M.K. Pandit ;S.K. Panda
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.47-56
    • /
    • 2023
  • Any pre-existed delamination defect present during manufacturing or induce during service loading conditions in the wingskin adherend invariably shows a greater loss of structural integrity of the spar wingskin joint (SWJ). In the present study, inter-laminar delamination propagation at the critical location of the SWJ has been carried out using contact and multi-point constraint finite elements available with commercial FE software (ANSYS APDL). Strain energy release rates (SERR) based on virtual crack closure technique have been computed for evaluation of the opening (Mode-I), sliding (Mode-II) and cross sliding (Mode-III) modes of delamination by sequential release of multi point constraint elements. The variations of different modes of SERR are observed to be significant by considering varied delamination lengths, material properties of adherends and radius of curvature of the SWJ panel. The SERR rates are seen to be much different at the two pre-embedded delamination ends. This shows dissimilar delamination propagation rates. The maximum is seen to occur in the delamination front in the unstiffened region of the wingskin. The curvature geometry and material anisotropy of SWJ adherends significantly influences the SERR values. Increase in the SERR values are observed with decrease in the radius of curvature of wingskin panel, keeping its width unchanged. SWJs made with flat FRP composite adherends have superior resistance to delamination damage propagation than curved composite laminated SWJ panels. SWJ made with Boron/Epoxy (B/E) material shows greater resistance to the delamination propagation.

Studies on Reduction of Yarn Hairiness by Nozzles in Ring Spinning and Winding by Airflow Simulation

  • Rengasamy R. S.;Patnaik Asis;Punekar Hemant
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.317-322
    • /
    • 2006
  • Reduction of yam hairiness by nozzles in ring spinning and winding is a new approach. Simulation of the airflow pattern inside the nozzles provides useful information about actual mechanism of hairiness reduction. The swirling air current inside the nozzles is capable of wrapping the protruding hairs around the yam body, thereby reducing yam hairiness. Since production rate of winding is very high and the process itself increases yarn hairiness any method to reduce the hairiness of yarns at this stage is a novel approach. A CFD (computational fluid dynamics) model has been developed to simulate the airflow pattern inside the nozzles using Fluent 6.1 software. In this study, both S- and Z-type nozzles having an axial angle of 500 and diameter of 2.2 mm were used for simulation studies. To create a swirling effect, four air holes of 0.4 mm diameter are made tangential to the inner walls of the nozzles. S- and Z-twisted yams of 30 tex were spun with and without nozzles and were tested for hairiness, tensile and evenness properties. The total number of hairs equal to or exceeding 3 mm (i.e. the S3 values) for yam spun with nozzle is nearly 49-51 % less than that of ring yams in case of nozzle-ring spinning, and 15 % less in case of nozzle-winding, while both the yarn types show little difference in evenness and tensile properties. Upward airflow gives best results in terms of hairiness reduction for nozzle-ring and nozzle wound yams compared to ring yarns. Yarn passing through the centre of the nozzle shows maximum reduction in S3 values.