• Title/Summary/Keyword: Patient-specific QA

Search Result 31, Processing Time 0.022 seconds

Clinical performance of FractionLab in patient-specific quality assurance for intensity-modulated radiotherapy : a retrospective study

  • Oh, Se An;Kim, Sung Yeop;Park, Jaehyeon;Park, Jae Won;Yea, Ji Woon
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.2
    • /
    • pp.108-115
    • /
    • 2022
  • Background: This study was aimed at comparing and analyzing the results of FractionLab (Varian/Mobius Medical System) with those of portal dosimetry that uses an electronic portal imaging device. Portal dosimetry is extensively used for patient-specific quality assurance (QA) in intensity-modulated radiotherapy (IMRT). Methods: The study includes 29 patients who underwent IMRT on a Novalis-Tx linear accelerator (Varian Medical System and Brain-LAB) between June 2019 and March 2021. We analyzed the multileaf collimator DynaLog files generated after portal dosimetry to evaluate the same condition using FractionLab. The results of the recently launched FractionLab at various gamma indices (0.1%/0.1 mm-1%/1 mm) are analyzed and compared with those of portal dosimetry (3%/3 mm). Results: The average gamma passing rates of portal dosimetry (3%/3 mm) and FractionLab are 98.1% (95.5%-100%) and 97.5% (92.3%-99.7%) at 0.6%/0.6 mm, respectively. The results of portal dosimetry (3%/3 mm) are statistically comparable with the QA results of FractionLab (0.6%/0.6 mm-0.9%/0.9 mm). Conclusion: This paper presents the clinical performance of FractionLab by the comparison of the QA results of FractionLab using portal dosimetry with various gamma indexes when performing patient-specific QA in IMRT treatment. Further, the appropriate gamma index when performing patient-specific QA with FractionLab is provided.

Clinical implementation of PerFRACTIONTM for pre-treatment patient-specific quality assurance

  • Sang-Won Kang;Boram Lee;Changhoon Song;Keun-Yong Eeom;Bum-Sup Jang;In Ah Kim;Jae-Sung Kim;Jin-Beom Chung;Seonghee Kang;Woong Cho;Dong-Suk Shin;Jin-Young Kim;Minsoo Chun
    • Journal of the Korean Physical Society
    • /
    • v.80
    • /
    • pp.516-525
    • /
    • 2022
  • This study is to assess the clinical use of commercial PerFRACTIONTM for patient-specific quality assurance of volumetric-modulated arc therapy. Forty-six pretreatment verification plans for patients treated using a TrueBeam STx linear accelerator for lesions in various treatment sites such as brain, head and neck (H&N), prostate, and lung were included in this study. All pretreatment verification plans were generated using the Eclipse treatment planning system (TPS). Dose distributions obtained from electronic portal imaging device (EPID), ArcCHECKTM, and two-dimensional (2D)/three-dimensional (3D) PerFRACTIONTM were then compared with the dose distribution calculated from the Eclipse TPS. In addition, the correlation between the plan complexity (the modulation complexity score and the leaf travel modulation complexity score) and the gamma passing rates (GPRs) of each quality assurance (QA) system was evaluated by calculating Spearman's rank correlation coefficient (rs) with the corresponding p-values. The gamma passing rates of 46 patients analyzed with the 2D/3D PerFRACTIONTM using the 2%/2 mm and 3%/3 mm criteria showed almost similar trends to those analyzed with the Portal dose imaging prediction (PDIP) and ArcCHECKTM except for those analyzed with ArcCHECKTM using the 2%/2 mm criterion. Most of weak or moderate correlations between GPRs and plan complexity were observed for all QA systems. The trend of mean rs between GPRs using PDIP and 2D/3D PerFRACTIONTM for both criteria and plan complexity indices as in the GPRs analysis was significantly similar for brain, prostate, and lung cases with lower complexity compared to H&N case. Furthermore, the trend of mean rs for 2D/3D PerFRACTIONTM for H&N case with high complexity was similar to that of ArcCHECKTM and slightly lower correlation was observed than that of PDIP. This work showed that the performance of 2D/3D PerFRACTIONTM for pretreatment patient-specific QA was almost comparable to that of PDIP, although there was small difference from ArcCHECKTM for some cases. Thus, we found that the PerFRACTIONTM is a suitable QA system for pretreatment patient-specific QA in a variety of treatment sites.

Clinical Implementation of 3D Printing in the Construction of Patient Specific Bolus for Photon Beam Radiotherapy for Mycosis Fungoides

  • Kim, Sung-woo;Kwak, Jungwon;Cho, Byungchul;Song, Si Yeol;Lee, Sang-wook;Jeong, Chiyoung
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • Creating individualized build-up material for superficial photon beam radiation therapy at irregular surface is complex with rice or commonly used flat shape bolus. In this study, we implemented a workflow using 3D printed patient specific bolus and describe our clinical experience. To provide better fitted build-up to irregular surface, the 3D printing technique was used. The PolyLactic Acid (PLA) which processed with nontoxic plant component was used for 3D printer filament material for clinical usage. The 3D printed bolus was designed using virtual bolus structure delineated on patient CT images. Dose distributions were generated from treatment plan for bolus assigned uniform relative electron density and bolus using relative electron density from CT image and compared to evaluate the inhomogeneity effect of bolus material. Pretreatment QA is performed to verify the relative electron density applied to bolus structure by gamma analysis. As an in-vivo dosimetry, Optically Stimulated Luminescent Dosimeters (OSLD) are used to measure the skin dose. The plan comparison result shows that discrepancies between the virtual bolus plan and printed bolus plan are negligible. (0.3% maximum dose difference and 0.2% mean dose difference). The dose distribution is evaluated with gamma method (2%, 2 mm) at the center of GTV and the passing rate was 99.6%. The OSLD measurement shows 0.3% to 2.1% higher than expected dose at patient treatment lesion. In this study, we treated Mycosis fungoides patient with patient specific bolus using 3D printing technique. The accuracy of treatment plan was verified by pretreatment QA and in-vivo dosimetry. The QA results and 4 month follow up result shows the radiation treatment using 3D printing bolus is feasible to treat irregular patient skin.

Reliability estimation about quality assurance method of radiotherapy planning (방사선치료계획 정도관리 방법에 따른 신뢰도 평가)

  • Kim, Jeong-Ho;Kim, Gha-Jung;Yoo, Se-Jong;Kim, Ki-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.119-124
    • /
    • 2015
  • According as radiation therapy technique develops, standardization of radiation therapy has been complicated by the plan QA(Quality Assurance). However, plan QA tools are two type, OADT (opposite accumulation dose tool) and 3DADT (3 dimensional accumulation dose tool). OADT is not applied to evaluation of beam path. Therefore tolerance error of beam path will establish measurement value at OADT. Plan is six beam path, five irradiation field at each beam path. And beam path error is 0 degree, 0.2 degree, 0.4 degree, 0.6 degree, 0.6 degree, 0.8 degree. Plan QA accomplishes at OADT, 3DADT. The more path error increases, the more plan QA error increases. Tolerance error of OADT path is 0.357 using tolerance error of conventional plan QA. Henceforth plan QA using OADT will include beam path error. In addition, It will increase reliability through precise and various plan technique.

Optimal Density Assignment to 2D Diode Array Detector for Different Dose Calculation Algorithms in Patient Specific VMAT QA

  • Park, So-Yeon;Park, Jong Min;Choi, Chang Heon;Chun, Minsoo;Han, Ji Hye;Cho, Jin Dong;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • Background: The purpose of this study is to assign an appropriate density to virtual phantom for 2D diode array detector with different dose calculation algorithms to guarantee the accuracy of patient-specific QA. Materials and Methods: Ten VMAT plans with 6 MV photon beam and ten VMAT plans with 15 MV photon beam were selected retrospectively. The computed tomography (CT) images of MapCHECK2 with MapPHAN were acquired to design the virtual phantom images. For all plans, dose distributions were calculated for the virtual phantoms with four different materials by AAA and AXB algorithms. The four materials were polystyrene, 455 HU, Jursinic phantom, and PVC. Passing rates for several gamma criteria were calculated by comparing the measured dose distribution with calculated dose distributions of four materials. Results and Discussion: For validation of AXB modeling in clinic, the mean percentages of agreement in the cases of dose difference criteria of 1.0% and 2.0% for 6 MV were $97.2%{\pm}2.3%$, and $99.4%{\pm}1.1%$, respectively while those for 15 MV were $98.5%{\pm}0.85%$ and $99.8%{\pm}0.2%$, respectively. In the case of 2%/2 mm, all mean passing rates were more than 96.0% and 97.2% for 6 MV and 15 MV, respectively, regardless of the virtual phantoms of different materials and dose calculation algorithms. The passing rates in all criteria slightly increased for AXB as well as AAA when using 455 HU rather than polystyrene. Conclusion: The virtual phantom which had a 455 HU values showed high passing rates for all gamma criteria. To guarantee the accuracy of patent-specific VMAT QA, each institution should fine-tune the mass density or HU values of this device.

Feasibility of MatriXX for Intensity Modulated Radiation Therapy Quality Assurance (세기변조방사선치료의 품질관리를 위한 이온전리함 매트릭스의 유용성 고찰)

  • Kang, Min-Young;Kim, Yoen-Lae;Park, Byung-Moon;Bae, Yong-Ki;Bang, Dong-Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.91-97
    • /
    • 2007
  • Purpose: To evaluate the feasibility of a commercial ion chamber array for intensity modulated radiation therapy (IMRT) quality assurance (QA) was performed IMRT patient-specific QA Materials and Methods: A use of IMRT patient-specific QA was examined for nasopharyngeal patient by using 6MV photon beams. The MatriXX (Wellhofer Dosimetrie, Germany) was used for IMRT QA. The case of nasopharyngeal cancer was performed inverse treatment planning. A hybrid dose distribution made on the CT data of MatriXX and solid phantom all of the same gantry angle (0$^\circ$). The measurement was acquired with geometrical condition that equal to hybrid treatment planning. The $\gamma$-index (dose difference 3%, DTA 3 mm) histogram was used for quantitative analysis of dose discrepancies. An absolute dose was compared at the high dose low gradient region. Results: The dose distribution was shown a good agreement by gamma evaluation. A proportion of acceptance criteria was 95.8%, 97.52%, 96.28%, 98.20%, 97.78%, 96.64% and 92.70% for gantry angles were 0$^\circ$, 55$^\circ$, 110$^\circ$, 140$^\circ$, 220$^\circ$, 250$^\circ$ and 305$^\circ$, respectively. The absolute dose in high dose low gradient region was shown reasonable agreement with the RTP calculation within $\pm$3%. Conclusion: The MatriXX offers the dosimetric characteristics required for performing both relative and absolute measurements. If MatriXX use in the clinic, it could be simplified and reduced the IMRT patient-specific QA workload. Therefore, the MatriXX is evaluated as a reliable and convenient dosimeter for IMRT patient-specific QA.

  • PDF

The Clinical Implementation of 2D Dose Distribution QA System for the Patient Specific Respiratory-gated Radiotherapy (호흡동조 방사선치료의 2차원 선량 분포 정도관리를 위한 4D 정도관리 시스템 개발)

  • Kim, Jin-Sung;Shin, Eun-Hyuk;Shin, Jung-Suk;Ju, Sang-Gyu;Han, Young-Yih;Park, Hee-Chul;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.127-136
    • /
    • 2010
  • Emerging technologies such as four-dimensional computed tomography (4D CT) is expected to allow clinicians to accurately model interfractional motion and to quantitatively estimate internal target volumes (ITVs) for radiation therapy involving moving targets. A need exists for a 4D radiation therapy quality assurance (QA) device that can incorporate and analyze the patient specific intrafractional motion as it relate to dose delivery and respiratory gating. We built a 4D RT prototype device and analyzed the patient-specific 4D radiation therapy QA for 2D dose distributions successfully. With more improvements, the 4D RT QA prototype device could be an integral part of a 4D RT decision process to confirm the dose delivery.

Initial Experience of Patient-Specific QA for Wobbling and Line-Scanning Proton Therapy at Samsung Medical Center

  • Jo, Kwanghyun;Ahn, Sung Hwan;Chung, Kwangzoo;Cho, Sungkoo;Shin, Eun Hyuk;Park, Seyjoon;Hong, Chae-Seon;Kim, Dae-Hyun;Lee, Boram;Lee, Woojin;Choi, Doo Ho;Lim, Do Hoon;Pyo, Hong Ryull;Han, Youngyih
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Purpose: To report the initial experience of patient-specific quality assurance (pQA) for the wobbling and line-scanning proton therapy at Samsung Medical Center. Materials and Methods: The pQA results of 89 wobbling treatments with 227 fields and 44 line-scanning treatments with 118 fields were analyzed from December 2015 to June 2016. For the wobbling method, proton range and spread-out Bragg peak (SOBP) width were verified. For the line-scanning method, output and two-dimensional dose distribution at multiple depths were verified by gamma analysis with 3%/3 mm criterion. Results: The average range difference was -0.44 mm with a standard deviation (SD) of 1.64 mm and 0.1 mm with an SD of 0.53 mm for the small and middle wobbling radii, respectively. For the line-scanning method, the output difference was within ${\pm}3%$. The gamma passing rates were over 95% with 3%/3 mm criterion for all depths. Conclusions: For the wobbling method, proton range and SOBP width were within the tolerance levels. For the line-scanning method, the output and two-dimensional dose distribution showed excellent agreement with the treatment plans.

The Development of Quality Assurance Program for CyberKnife (사이버나이프의 품질관리 절차서 개발)

  • Jang, Ji-Sun;Kang, Young-Nam;Shin, Dong-Oh;Kim, Moon-Chan;Yoon, Sei-Chul;Choi, Ihl-Bohng;Kim, Mi-Sook;Cho, Chul-Koo;Yoo, Seong-Yul;Kwon, Soo-Il;Lee, Dong-Han
    • Radiation Oncology Journal
    • /
    • v.24 no.3
    • /
    • pp.185-191
    • /
    • 2006
  • [ $\underline{Purpose}$ ]: Standardization quality assurance (QA) program of CyberKnife for suitable circumstances in Korea has not been established. In this research, we investigated the development of QA program for CyberKnife and evaluation of the feasibility under applications. $\underline{Materials\;and\;Methods}$: Considering the feature of constitution for systems and the therapeutic methodology of CyberKnife, the list of quality control (QC) was established and divided dependent on the each period of operations. And then all these developed QC lists were categorized into three groups such as basic QC, delivery specific QC, and patient specific QC based on the each purpose of QA. In order to verify the validity of the established QA program, this QC lists was applied to two CyberKnife centers. The acceptable tolerance was based on the undertaking inspection list from the CyberKnife manufacturer and the QC results during last three years of two CyberKnife centers in Korea. The acquired measurement results were evaluated for the analysis of the current QA status and the verification of the propriety for the developed QA program. $\underline{Results}$: The current QA status of two CyberKnife centers was evaluated from the accuracy of all measurements in relation with application of the established QA program. Each measurement result was verified having a good agreement within the acceptable tolerance limit of the developed QA program. $\underline{Conclusion}$: It is considered that the developed QA program in this research could be established the standardization of QC methods for CyberKnife and confirmed the accuracy and stability for the image-guided stereotactic radiotherapy.

Uncertainty Assessment: Relative versus Absolute Point Dose Measurement for Patient Specific Quality Assurance in EBRT

  • Mahmood, Talat;Ibrahim, Mounir;Aqeel, Muhammad
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.111-121
    • /
    • 2017
  • Verification of dose distribution is an essential part of ensuring the treatment planning system's (TPS) calculated dose will achieve the desired outcome in radiation therapy. Each measurement have uncertainty associated with it. It is desirable to reduce the measurement uncertainty. A best approach is to reduce the uncertainty associated with each step of the process to keep the total uncertainty under acceptable limits. Point dose patient specific quality assurance (QA) is recommended by American Association of Medical Physicists (AAPM) and European Society for Radiotherapy and Oncology (ESTRO) for all the complex radiation therapy treatment techniques. Relative and absolute point dose measurement methods are used to verify the TPS computed dose. Relative and absolute point dose measurement techniques have a number of steps to measure the point dose which includes chamber cross calibration, electrometer reading, chamber calibration coefficient, beam quality correction factor, reference conditions, influences quantities, machine stability, nominal calibration factor (for relative method) and absolute dose calibration of machine. Keeping these parameters in mind, the estimated relative percentage uncertainty associated with the absolute point dose measurement is 2.1% (k=1). On the other hand, the relative percentage uncertainty associated with the relative point dose verification method is estimated to 1.0% (k=1). To compare both point dose measurement methods, 13 head and neck (H&N) IMRT patients were selected. A point dose for each patient was measured with both methods. The average percentage difference between TPS computed dose and measured absolute relative point dose was 1.4% and 1% respectively. The results of this comparative study show that while choosing the relative or absolute point dose measurement technique, both techniques can produce similar results for H&N IMRT treatment plans. There is no statistically significant difference between both point dose verification methods based upon the t-test for comparing two means.