• 제목/요약/키워드: Pathogenic mechanisms

검색결과 170건 처리시간 0.024초

Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals

  • Patra, Amlan Kumar;Kar, Indrajit
    • Journal of Animal Science and Technology
    • /
    • 제63권2호
    • /
    • pp.211-247
    • /
    • 2021
  • Livestock species experience several stresses, particularly weaning, transportation, overproduction, crowding, temperature, and diseases in their life. Heat stress (HS) is one of the most stressors, which is encountered in livestock production systems throughout the world, especially in the tropical regions and is likely to be intensified due to global rise in environmental temperature. The gut has emerged as one of the major target organs affected by HS. The alpha- and beta-diversity of gut microbiota composition are altered due to heat exposure to animals with greater colonization of pathogenic microbiota groups. HS also induces several changes in the gut including damages of microstructures of the mucosal epithelia, increased oxidative insults, reduced immunity, and increased permeability of the gut to toxins and pathogens. Vulnerability of the intestinal barrier integrity leads to invasion of pathogenic microbes and translocation of antigens to the blood circulations, which ultimately may cause systematic inflammations and immune responses. Moreover, digestion of nutrients in the guts may be impaired due to reduced enzymatic activity in the digesta, reduced surface areas for absorption and injury to the mucosal structure and altered expressions of the nutrient transport proteins and genes. The systematic hormonal changes due to HS along with alterations in immune and inflammatory responses often cause reduced feed intake and production performance in livestock and poultry. The altered microbiome likely orchestrates to the hosts for various relevant biological phenomena occurring in the body, but the exact mechanisms how functional communications occur between the microbiota and HS responses are yet to be elucidated. This review aims to discuss the effects of HS on microbiota composition, mucosal structure, oxidant-antioxidant balance mechanism, immunity, and barrier integrity in the gut, and production performance of farm animals along with the dietary ameliorations of HS. Also, this review attempts to explain the mechanisms how these biological responses are affected by HS.

Effects of Ribosomal Protein L39-L on the Drug Resistance Mechanisms of Lung Cancer A549 Cells

  • Liu, Hong-Sheng;Tan, Wen-Bin;Yang, Ning;Yang, Yuan-Yuan;Cheng, Peng;Liu, Li-Juan;Wang, Wei-Jie;Zhu, Chang-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권7호
    • /
    • pp.3093-3097
    • /
    • 2014
  • Background: Cancer is a major threat to the public health whether in developed or in developing countries. As the most common primary malignant tumor, the morbidity and mortality rate of lung cancer continues to rise in recent ten years worldwide. Chemotherapy is one of the main methods in the treatment of lung cancer, but this is hampered by chemotherapy drug resistance, especially MDR. As a component of the 60S large ribosomal subunit, ribosomal protein L39-L gene was reported to be expressed specifically in the human testis and human cancer samples of various tissue origins. Materials and Methods: Total RNA of cultured drug-resistant and susceptible A549 cells was isolated, and real time quantitative RT-PCR were used to indicate the transcribe difference between amycin resistant and susceptible strain of A549 cells. Viability assay were used to show the amycin resistance difference in RPL39-L transfected A549 cell line than control vector and null-transfected A549 cell line. Results: The ribosomal protein L39-L transcription level was 8.2 times higher in drug-resistant human lung cancer A549 cell line than in susceptible A549 cell line by quantitative RT-PCR analysis. The ribosomal protein L39-L transfected cells showed enhanced drug resistance compared to plasmid vector-transfected or null-transfected cells as determined by methyl tritiated thymidine (3H-TdR) incorporation. Conclusions and Implications for Practice: The ribosomal protein L39-L gene may have effects on the drug resistance mechanism of lung cancer A549 cells.

Identification of Protein Arginine Methyltransferase 5 as a Regulator for Encystation of Acanthamoeba

  • Moon, Eun-Kyung;Hong, Yeonchul;Chung, Dong-Il;Goo, Youn-Kyoung;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • 제54권2호
    • /
    • pp.133-138
    • /
    • 2016
  • Encystation is an essential process for Acanthamoeba survival under nutrient-limiting conditions and exposure to drugs. The expression of several genes has been observed to increase or decrease during encystation. Epigenetic processes involved in regulation of gene expression have been shown to play a role in several pathogenic parasites. In the present study, we identified the protein arginine methyltransferase 5 (PRMT5), a known epigenetic regulator, in Acanthamoeba castellanii. PRMT5 of A. castellanii (AcPRMT5) contained domains found in S-adenosylmethionine-dependent methyltransferases and in PRMT5 arginine-N-methyltransferase. Expression levels of AcPRMT5 were increased during encystation of A. castellanii. The EGFP-PRMT5 fusion protein was mainly localized in the nucleus of trophozoites. A. castellanii transfected with siRNA designed against AcPRMT5 failed to form mature cysts. The findings of this study lead to a better understanding of epigenetic mechanisms behind the regulation of encystation in cyst-forming pathogenic protozoa.

In vitro Antiviral Activities of Korean Marine Algae Extracts against Fish Pathogenic Infectious Hematopoietic Necrosis Virus and Infectious Pancreatic Necrosis Virus

  • Kang, So-Young;Kim, Seok-Ryel;Oh, Myung-Joo
    • Food Science and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.1074-1078
    • /
    • 2008
  • To investigate the antiviral activity of marine algae against fish pathogenic viruses, which are often the causes of viral disease in aquaculture, the 80% methanolic extracts of 21 species collected from the coast of Korea were screened for their in vitro antiviral activities on infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV), using a flounder spleen (FSP) cell-line. Among them, Monostroma nitidum (10 ${\mu}g/mL$) exhibited the strongest inactivation on IHNV, showing a 2 log reduced virus titre as compared to the control in the determination of direct virucidal activity. In addition, Polysiphonia morrowii (100 ${\mu}g/mL$) remarkably reduced the virus titres of treated cells by 2-2.5 log, for both IHNV and IPNV, in the determination of cellular protective activity, implying the existence of substances that may modulate innate host defense mechanisms against viral infections. These results reveal that some marine algae could be promising candidates as sources of antiviral agents or as health-promoting feeds for aquaculture.

『상한론(傷寒論)』 소시호탕증(小柴胡湯證)의 한열왕래(寒熱往來)에 대한 연구(硏究) (The study on the syndrome of Sosihotang's alternate chills and fever in Sang Han Lun)

  • 박상균;방정균
    • 대한한의학원전학회지
    • /
    • 제27권3호
    • /
    • pp.33-46
    • /
    • 2014
  • Objectives : Sosihotang is a typical prescription in Sang Han Lun. And the alternate chills and fever is a Sosihotang's typical symptom. Therefore I will study of how the syndrome of Sosihotang's alternate chills and fever caused. Methods : Examine the claims of the syndrome of Sosihotang's alternate chills and fever in Sang Han Lun. The scholar's claims are not all same. Thus, I analysis the claims of many scholars. Results : The syndrome of Sosihotang has two mechanisms. The move of defensive Gi(衛氣) can explain the occurrence of alternate chills and fever. If the defense Gi enter inside the body, it struggle with pathogenic Gi, the fever is occurred. On the contrary to this, if the defense Gi exits the body the chills occurs because of the lack of defense Gi. Conclusions : The syndrome of Sosihotang could be taken ill by tranmission or direct attack of exogenous pathogenic factors(直中). Symptoms chills and fever occurs due to the entrance and exit of defensive Gi.

Overexpression of cysteine protease in transgenic Brassica rapa enhances resistance to bacterial soft rot and up-regulate the expression of various stress-regulated genes

  • Jung, Yu-Jin;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • 제37권3호
    • /
    • pp.327-336
    • /
    • 2010
  • Cysteine proteases have been known as a critical factor in plant defense mechanisms in pineapple, papaya, or wild fig. Papain or ficin is one kind of cysteine proteases that shows toxic effects to herbivorous insects and pathogenic bacteria. However, resistance to bacterial soft rot of plants genetically engineered with cysteine protease has been little examined thus far. We cloned a cysteine protease cDNA from Ananas comosus and introduced the gene into Chinese cabbage (Brassica rapa) under the control of the cauliflower mosaic virus 35S promoter. The transgene was stably integrated and actively transcribed in transgenic plants. In comparisons with wild-type plants, the $T_2$ and $T_3$ transgenic plants exhibited a significant increase in endo-protease activity in leaves and enhanced resistance to bacterial soft rot. A cDNA microarray analysis revealed that several genes were more abundantly transcribed in the transgenic than in the wild type. These genes encode a glyoxal oxidase, PR-1 protein, PDF1, protein kinase, LTP protein, UBA protein and protease inhibitor. These results suggest an important role for cysteine protease as a signaling regulator in biotic stress signaling pathways, leading to the build-up of defense mechanism to pathogenic bacteria in plants.

비브리오속 균주들에서외 세포의 효소의 분포 (Distribution of Extracellular Proteases from Various Vibrio Species)

  • 차재호;김윤희;정초록;김수광;양지영
    • 한국식품영양과학회지
    • /
    • 제30권2호
    • /
    • pp.222-227
    • /
    • 2001
  • The members of the genus Vibrio include harmless aquatic strain as well as strains capable of causing infections in human and fish. Pathogenic mechanisms are only understood for Vibrio cholerae O1 and O139 and not for the majority of Vibrio species. Twelve clinical and nonclinical strains were examined by in vitro and in vivo experiments for the importance of extracellular enzymes as a virulence determinant of Vibrio species. In vivo cytotoxicity assay was performed by injecting approximately $10^{8}$ cells/mL into mice (BALB/c). V. harvyi and V. vulnificus showed 100% lethality within 3hr after bacterial injection. V. fluvialis and four strains of V. parahaemolyticus showed 50% lethality within 4hr. V. mimicus, V. alginolyticus and V. furnissii revealed 30% lethality within 9hr. Nonclinical strains, V. campbellii and V. ordalii, did not show any lethality. In vitro protease and hemolytic activities were also good indicators for clinical and nonclinical strains of Vibrio species. The clinical strains showed much higher activities than nonclinical strains. The activity of some clinical strains of re-isolates was evidently increased. Most clinical strains had $\beta$ hemolytic activity. The results demonstrate that the prevalent distribution of extracellular proteases in pathogenic Vibrio sp. implies their importance as a virulence determinant.

  • PDF

실험적 동맥경화증에서 Porphyromonas gingivalis 열충격단백-항원결정부위-특이성 T-세포주의 SCID mice내로의 주입효과에 대한 연구 (Adoptive transfer of Porphyromonas gingivalis heat shock protein epitope-specific T-cell lines into SCID mice in experimental atherosclerosis)

  • 최점일
    • Journal of Periodontal and Implant Science
    • /
    • 제35권1호
    • /
    • pp.1-8
    • /
    • 2005
  • Bacterial heat shock protein has been one of the components that are responsible to induce autoimmune disease mechanisms in the pathogenesis of atherosclerosis due to high level of homology in sequence with human counterpart. This mechanism may explain how bacterial infectious disease, such as periodontal disease, might contribute to the acceleration of the disease process of atherosclerosis. Porphyromonas gingivalis which is a major periodontal pathogenic bacterial species, has been implicated as one of the pathogenic bacteria playing the role in this context. The present study has been performed to evaluate the anti-atherosclerotic effect of adoptive transfer of Porphyromonas gingivalis heat shock protein epitope-specific T cell lines into severe combined immunodeficiency (SCID) mice. Peptide no. 15 with amino acid sequence VKEVASKTND-specific T cell line was selected for the transfer. When experimental atherosclerosis was induced in SCID mice adoptively transferred either by the T cell lines (experimental group) or by non-specific mouse T cells (control group), there was no significant difference in the severity and extent of the atherosclerosis induced by hypercholesterol diet.

Transcriptional Response of Pectobacterium carotovorum to Cinnamaldehyde Treatment

  • Jihye Jung;Dawon Jo;Soo-Jin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.538-546
    • /
    • 2024
  • Cinnamaldehyde is a natural compound extracted from cinnamon bark essential oil, acclaimed for its versatile properties in both pharmaceutical and agricultural fields, including antimicrobial, antioxidant, and anticancer activities. Although potential of cinnamaldehyde against plant pathogenic bacteria like Agrobacterium tumefaciens and Pseudomonas syringae pv. actinidiae causative agents of crown gall and bacterial canker diseases, respectively has been documented, in-depth studies into cinnamaldehyde's broader influence on plant pathogenic bacteria are relatively unexplored. Particularly, Pectobacterium spp., gram-negative soil-borne pathogens, notoriously cause soft rot damage across a spectrum of plant families, emphasizing the urgency for effective treatments. Our investigation established that the Minimum Inhibitory Concentrations (MICs) of cinnamaldehyde against strains P. odoriferum JK2, P. carotovorum BP201601, and P. versatile MYP201603 were 250 ㎍/ml, 125 ㎍/ml, and 125 ㎍/ml, respectively. Concurrently, their Minimum Bactericidal Concentrations (MBCs) were found to be 500 ㎍/ml, 250 ㎍/ml, and 500 ㎍/ml, respectively. Using RNA-sequencing analysis, we identified 1,907 differentially expressed genes in P. carotovorum BP201601 treated with 500 ㎍/ml cinnamaldehyde. Notably, our results indicate that cinnamaldehyde upregulated nitrate reductase pathways while downregulating the citrate cycle, suggesting a potential disruption in the aerobic respiration system of P. carotovorum during cinnamaldehyde exposure. This study serves as a pioneering exploration of the transcriptional response of P. carotovorum to cinnamaldehyde, providing insights into the bactericidal mechanisms employed by cinnamaldehyde against this bacterium.

Inhibitory Effects of Gallic Acid Isolated from Caesalpinia mimosoides Lamk on Cholangiocarcinoma Cell Lines and Foodborne Pathogenic Bacteria

  • Rattanata, Narintorn;Klaynongsruang, Sompong;Daduang, Sakda;Tavichakorntrakool, Ratree;Limpaiboon, Temduang;Lekphrom, Ratsami;Boonsiri, Patcharee;Daduang, Jureerut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.1341-1345
    • /
    • 2016
  • Gallic acid was isolated from Caesalpinia mimosoides Lamk and the structure s identified based on spectroscopic analysis and comparison with authentic compound. In this study we compared the ability of natural gallic acid (nGA) and commercial gallic acid (cGA) to inhibit the proliferation of cholangiocarcinoma cell lines (M213, M214) and foodborne pathogenic bacteria (Salmonella spp. and Plesiomonas shigelloides). Both nGA and cGA had the same inhibitory effects on cell proliferation by inducing apoptosis of cholangiocarcinoma cell lines. In addition, nGA inhibited growth of foodborne pathogenic bacteria in the same manner as cGA. Our results suggest that nGA from Caesalpinia mimosoides Lamk is a potential anticancer and antibacterial compound. However, in vivo studies are needed to elucidate the specific mechanisms involved.