• Title/Summary/Keyword: Pathogenic Agents

Search Result 241, Processing Time 0.021 seconds

A Technique for the Prevention of Greenhouse Whitefly (Trialeurodes vaporariorum) Using the Entomopathogenic Fungus Beauveria bassiana M130

  • Kim, Chang-Su;Lee, Jung-Bok;Kim, Beam-Soo;Nam, Young-Ho;Shin, Kee-Sun;Kim, Jin-Won;Kim, Jang-Eok;Kwon, Gi-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The possibility of using hyphomycete fungi as suitable biocontrol agents against greenhouse whitefly has led to the isolation of various insect pathogenic fungi. Among them is Beauveria bassiana, one of the most studied entomopathogenic fungi. The objective of this study was to use B. bassiana M130 as an insecticidal agent against the greenhouse whitefly. M130 isolated from infected insects is known to be a biocontrol agent against greenhouse whitefly. Phylogenetic classification of M130 was determined according to its morphological features and 18S rRNA sequence analysis. M130 was identified as B. bassiana M130 and showed chitinase (342.28 units/ml) and protease (461.70 units/ml) activities, which were involved in the invasion of the host through the outer cuticle layer, thus killing them. The insecticidal activity was 55.2% in petri-dish test, 84.6% in pot test, and 45.3% in field test. The results of this study indicate that B. bassiana has potential as a biological agent for the control of greenhouse whitefly to replace chemical pesticides.

Diversity of the Streptococcal Strains Isolated from Diseased Olive Flounder (Paralichthys olivaceus) (넙치 (Paralichthys olivaceus) 병어에서 분리된 연쇄상구균의 다양성)

  • KIM Jong-Hun;KIM Eunheui
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.6
    • /
    • pp.654-660
    • /
    • 2003
  • To evaluate the biological diversity of fish pathogenic streptococci, 35 strains isolated from diseased olive flounder (Paralichtys olivaceus), were analyzed using a random amplified polymorphic DNA (RAPD) technique with the oligonucleotide commercial primer 6 (Amersham Biosciences). Api 20 Strep test, drug resistance and artificial infection were carried out for further characterization of the isolates. RAPD fingerprints showed similar pattern in 25 strains (about $71.4\%$ of 35 isolates) and these strains were designed as RA group 1. Similarities greater than $44\%$ were obtained when the Dice coefficient was applied among the isolates of RA 1. On the other hand, the reference Streptococcus iniae showed a similar RAPD profile to the isolates with similarity levels of $40-93.3\%.$ Rh I was suggested to be the dominant group isolated from olive flounder suffering from streptococcosis. However, the isolates of Rh 1 group were not classified into the same species by the Api 20 Strep identification system. There was no peculiarity in drug resistance patterns of Rh I group isolates against 7 antibacterial agents. However, only 3 of 25 isolates $(0.12\%)$ showed oxytetracycline (OTC) resistance and OTC might be a useful chemotherapeutic agent in controlling the streptococcosis by strains of RA I group in olive flounder. Fish injected intraperitoneally with $10^5$ CFU of an isolate of Rh I and RA III group showed $60\%\;and\;50\%$ accumulative mortality for 20 days, respectively ($20\%$ in control or Rh II). However luther comparative studies about differences in virulence between isolates are needed.

Detection of foot-and-mouth disease virus (FMDV) and avian influenza virus (AIV) from animal carcass disposal sites using real-time RT-PCR

  • Miguel, Michelle;Kim, Seon-Ho;Lee, Sang-Suk;Cho, Yong-Il
    • Korean Journal of Veterinary Service
    • /
    • v.43 no.2
    • /
    • pp.107-112
    • /
    • 2020
  • Foot-and-mouth disease (FMD) and avian influenza (AI) are highly pathogenic viral disease which affects the livestock industry worldwide. Outbreak of these viruses causes great impact in the livestock industry; thus, disease infected animals were immediately disposed. Burial is the commonly used disposal method for deceased animals. However, there is potential for secondary environmental contamination, as well as the risk that infectious agents persisting in the environment due to the limited environmental controls in livestock burial sites during the decomposition of the carcasses. Therefore, this study aimed to investigate the detection of FMD and AI viruses from animal carcass disposal sites using real-time reverse transcription PCR. Soil samples of more than three years post-burial from livestock carcass disposal sites were collected and processed RNA isolation using a commercial extraction kit. The isolated RNA of the samples was used for the detection of FMDV and AIV using qRT-PCR. Based on the qPCR assay result, no viral particle was detected in the soil samples collected from the animal disposal sites. This indicates that 3 years of burial and their carcass disposal method is efficient for the control or at least reduction of spread infections in the surrounding environment.

A rapid detection of Salmonella species using polymerization chain reaction and Southern hybridization (Polymerization chain reaction과 Southern hybridization을 이용한 Salmonella속 균의 신속한 검출)

  • Kim, Won-yong;Chang, Young-hyo;Park, Kyoung-yoon;Kim, Chul-joong;Shin, Kwang-soon;Park, Yong-ha
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.3
    • /
    • pp.531-536
    • /
    • 1995
  • Salmonella species are the most prevalent etiologic agents of food-borne acute gastroenteritis. Direct isolation of bacteria from the contaminated food, stool and animal tissues has been used for the diagnosis of salmonellosis routinely. However, isolation of bacteria is time consuming work and not so highly sensitive. In recent years, improved methods of polymerization chain reaction(PCR) and probe hybridization technique have led to the developement of diagnostic assays which employ to detect various human and animal pathogenic bacteria. In this study, we have performed the polymerization chain reaction to detect Salmonella pullorum from tissues and stool samples of chickens with two specific primers, ST5 and ST8C. The target DNA fragment of PhoE gene was successfully amplified from liver, spleen, pancreas, heart, lung, ovary, oviduct and feces samples. The amplified DNA fragments were hybridized with Salmonella typhymurium TA3000 PhoE probe by Southern hybridization. The PCR to amplify the PhoE gene was highly rapid and sensitive method to detect Salmonella pullorum from tissues and stool samples.

  • PDF

Drug induced Pulmonary Edema (약물 유발성폐부종)

  • Sung, Si-Han;Jang, Hye-Young;Lim, Hoon
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.8 no.2
    • /
    • pp.113-121
    • /
    • 2010
  • Purpose: Drug-induced non-cardiogenic pulmonary edema has been reported on in a drug case series. For most of the agents that cause pulmonary edema, the pathogenic mechanisms that are responsible for the pulmonary edema remain unknown. We report here on the cases of suspected drug-induced pulmonary edema and we analyze the clinical characteristics. Methods: We reviewed the medical records of 1,345 patients who had drug adverse effects and drug poisoning from January 2005 to July 2010, and 480 of these patients were admitted to the EM Department. Among them, 17 patients developed abnormal chest radiological findings and they were analyzed for any clinical characteristics, the initial symptoms, securing the airway and the clinical results. Results: Seventeen patients out of 480 (3.54%) developed drug-induced abnormal chest radiographic pulmonary edema; they displayed initial symptoms that included mental change (41.2%), dyspnea (17.6%), vomiting (11.8%), etc, and some displayed no symptoms at all (11.8%). Only 3 patients out of the 11 who died or had severe pulmonary edema were able to obtain an advanced airway prior to their arrival to the EM Department. Clinical recovery was generally rapid and this was mostly completed within 6 hours. The mortality rate was 11.8% (2 of 17 patients), and the causative drugs were found to be propofol (35.3%, 6 of 17 patients), multiple drugs (41.2% or 7 out of 17) and one patient each with ephedrine, ethylene glycol, doxylamine and an unknown drug, respectively. Conclusion: Drug-induced pulmonary edema and deaths are not uncommon, and recovery is typically rapid with few long-term sequelae when drug administration is discontinued. Oxygen therapy and securing the airway must be performed during transportation for patients with pulmonary edema.

  • PDF

Simple Evaluation of Listeria monocytogenes Pathogenesis Using Caenorhabditis elegans Animal Model

  • Yang, Kyoung Hee;Yun, Bohyun;Choi, Hye Jin;Ryu, Sangdon;Lee, Woong Ji;Oh, Mi-Hwa;Song, Min-Ho;Kim, Jong Nam;Oh, Sangnam;Kim, Younghoon;Kim, Young Jun
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.84-92
    • /
    • 2019
  • Listeria monocytogenes is a major cause of serious foodborne illness in the dairy foods. Although Caenorhabditis elegans model is well established as a virulence model of pathogenic bacteria, its application on L. monocytogenes is critically unclear. The objective of this study was to carry out an evaluation of L. monocytogenes toxicity using C. elegans nematode as a simple host model. We found that C. elegans nematodes have high susceptibility to L. monocytogenes infection, as a consequence of accumulation of bacteria in the worms' intestine. However, L. innocua, which is known to be non-toxic, is not accumulate in the intestine of worms and is not toxic similarly to Escherichia coli OP50 known as the normal feed source of C. elegans. Importantly, immune-associated genes of C. elegans were intensely upregulated more than 3.0-fold when they exposed to L. monocytogenes. In conclusion, we established that C. elegans is an effective model for studying the toxicity of L. monocytogenes and we anticipate that this system will result in the discovery of many potential anti-listeria agents for dairy foods.

Antioxidant and Antifungal Activity of Endophytic Fungi Associated with Agarwood Trees

  • Hidayat, Asep;Turjaman, Maman;Faulina, Sarah Asih;Ridwan, Fadel;Aryanto, Aryanto;Najmulah, Najmulah;Irawadi, Tun Tedja;Iswanto, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.459-471
    • /
    • 2019
  • Several species of Aquilaria and Gyrinops are native to Indonesia and well known as agarwood-producing trees with a high economic value. Their bioactive compounds have a wide spectrum of uses, such as in medicine and cosmetics. These genera have undergone extensive search for novel bioactive compounds. The purpose of this study was to isolate, identify, and characterize the endophytic fungi community associated with Aquilaria malaccensis, A. microcarpa, Gyrinops versteegii, and A. crassna trees and investigate their bioactive properties as antioxidant agents and antagonists. A total of 50 fungi were successfully isolated from different tissues of the four species of agarwood-producing trees. Two isolates exhibited strong antioxidant activity, namely, Apodus oryzae (R2MC3A, $IC_{50}$ 60.92 mg/mL) and Diaporthe sp. (P1DS1[C], $IC_{50}$ 76.65 mg/mL). Two isolates, Pestalotiopsis theae (P3BS3[B]) and Curvularia sp. (P2CD3A), showed >75% antifungal activity against pathogenic Fusarium solani. The results revealed that endophytic fungi associated with the studied agarwood-producing trees had potential antioxidant and antifungal activities for further applications in biotechnology.

Development of sandwich enzyme-linked immunosorbent assay for a large-scale detection of porcine transmissible gastroenteritis virus in feces

  • Oh, Yeonsu;Lee, Sang-Joon;Cho, Ho-Seong;Tark, Dongseob
    • Korean Journal of Veterinary Service
    • /
    • v.43 no.4
    • /
    • pp.237-244
    • /
    • 2020
  • Porcine transmissible gastroenteritis (TGE) has been a significant cause of economic losses in pig farming industry since 1950s. Although transmissible gastroenteritis virus (TGEV) has declined in recent years, it should not be excluded because of its characteristics; the frequency of gene mutation, the mortality in piglets, and the possibility for sudden incidence. Therefore, the herd-level monitoring of the virus is important to prevent further circulation of TGE. The aim of this study is to develop a large-scale sandwich enzyme-linked immunosorbent assay (ELISA) with high specificity to rapidly detect TGEV in feces by using monoclonal antibodies (Mabs). The TGEV specific Mabs were produced in hybridoma cells. Among the Mabs belonged to the IgG class developed by this study, the final selected 8H6, 1B7, 4G3, and 1F8 were identified to have the neutralization ability against TGEV. The sandwich ELISA was established using 8H6 as a reporter antibody and 1B7 and the reported 5C8 as a capture antibody. The developed sandwich ELISA was able to distinguish TGEV from other pathogenic diarrheal agents (porcine rotavirus, porcine reovirus, porcine epidemic diarrhea virus (PEDV), E. coli, and C. perfringens) in tissue culture as well as fecal samples. And the detection rate of TGEV in feces was 80% compared with RT-PCR. The results suggested that the developed sandwich ELISA may be useful in the herd-level monitoring for effective preventive measures due to the early diagnosis of TGEV using a large amount of samples.

Characterization of Pseudomonas sp. NIBR-H-19, an Antimicrobial Secondary Metabolite Producer Isolated from the Gut of Korean Native Sea Roach, Ligia exotica

  • Sungmin Hwang;Jun Hyeok Yang;Ho Seok Sim;Sung Ho Choi;Byounghee Lee;Woo Young Bang;Ki Hwan Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1416-1426
    • /
    • 2022
  • The need to discover new types of antimicrobial agents has grown since the emergence of antibiotic-resistant pathogens that threaten human health. The world's oceans, comprising complex niches of biodiversity, are a promising environment from which to extract new antibiotics-like compounds. In this study, we newly isolated Pseudomonas sp. NIBR-H-19 from the gut of the sea roach Ligia exotica and present both phenotypes and genomic information consisting of 6,184,379 bp in a single chromosome possessing a total of 5,644 protein-coding genes. Genomic analysis of the isolated species revealed that numerous genes involved in antimicrobial secondary metabolites are predicted throughout the whole genome. Moreover, our analysis showed that among twenty-five pathogenic bacteria, the growth of three pathogens, including Staphylococcus aureus, Streptococcus hominis and Rhodococcus equi, was significantly inhibited by the culture of Pseudomonas sp. NIBR-H-19. The characterization of marine microorganisms with biochemical assays and genomics tools will help uncover the biosynthesis and action mechanism of antimicrobial metabolites for development as antagonistic probiotics against fish pathogens in an aquatic culture system.