• Title/Summary/Keyword: Pathogenesis related proteins

Search Result 103, Processing Time 0.024 seconds

Functional Characterization of PR-1 Protein, β-1,3-Glucanase and Chitinase Genes During Defense Response to Biotic and Abiotic Stresses in Capsicum annuum

  • Hong, Jeum-Kyu;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • 제21권3호
    • /
    • pp.195-206
    • /
    • 2005
  • Spatial and temporal expression of pathogenesis-related (PR) gene and proteins has been recognized as inducible defense response in pepper plants. Gene expression and/or protein accumulation of PR-1, $\beta-1,3-glucanase$ and chitinase was predominantly found in pepper plants during the inoculations by Xanthomonas campestris pv. vesicatoria, Phytophthora capsici and Colletotrichum coccodes. PR-1 and chitinase genes were also induced in pepper plants in response to environmental stresses, such as high salinity and drought. PR-1 and chitinase gene expressions by biotic and abiotic stresses were regulated by their own promoter regions containing several stress-related cis-acting elements. Overexpression of pepper PR-1 or chitinase genes in heterogeneous transgenic plants showed enhanced disease resistance as well as environmental stress tolerances. In this review, we focused on the putative function of pepper PR-1, $\beta-1,3-glucanase$ and chitinase proteins and/or genes at the biochemical, molecular and cytological aspects.

Differential Display PCR을 이용한 사과 자가적과성 연관 유전자 탐색 (Identifying Genes Related with Self-thinning Characteristics in Apple by Differential Display PCR)

  • 김세희;허성;신일섭;김정희;조강희;김대현;황정환
    • 한국육종학회지
    • /
    • 제42권5호
    • /
    • pp.565-573
    • /
    • 2010
  • 사과의 경우 한 과총에 5개의 꽃이 피는데 그 중 한 가운데의 중심화가 먼저 개화하여 과일로 발달하고 주위의 측과 4개는 스스로 낙과되는 현상을 자가적과성이라고 한다. 적과는 인위적으로 과실의 숫자를 줄여 잎 수와 과실 수의 균형을 맞추는 작업으로 과실의 크기를 증가시키고, 수세, 수형을 유지시켜 안정적인 생산에 도움을 준다. 노동력 절감을 위해 인간에게 유용하게 사용될 수 있는 특성이 자가적과성인데, 자가적과성 품종의 사과에서 측과는 만개 후 30일 이내에 떨어지고 중심과만 남아서 성숙하게 된다. 51개의 사과 품종으로부터 비자가적과성 그룹 20종, 6월 생리적 낙과 그룹 16종, 자가적과성 그룹 15종을 분류하였다. 대표적인 자가적과성 품종인 Aori #9 로부터 중심과와 측과에서 다르게 발현이 되는 유전자들을 DD-PCR 방법으로 확인하였다. 중심과에서 30개의 clones 과 측과에서 24개의 clones을 선발하여 염기서열을 분석하였다. 주로 측과에서 발현되는 유전자들은 pathogenesis, senescence, temperature stress, protein degradation, fruit browning, sorbitol metabolism에 관여하는 유전자들과 높은 상동성을 나타내고, 중심과에서 발현되는 유전자들의 염기서열을 분석해 보면 anthocyanin의 up-regulation이나 flavonol 생합성, ethylene 생합성에 관여하는 유전자들이 분포한다. Cytochrome P450 유전자의 발현양상을 보기 위해 Real time PCR 분석을 한 결과 중심과보다 측과에서 발현량이 높게 나타났다. 중심과와 측과에서 다르게 발현되는 유전자들의 실제 발현양상을 분석하기 위해 Real time PCR을 이용해서 상대정량을 분석할 계획이며 분자수준에서의 자가적과를 조절하는 기작에 대한 앞으로의 연구는 생력 재배가 가능한 품종 육성의 육종 소재 개발에 활용될 수 있을 것이다.

A Proteomics Based Approach Reveals Differential Regulation of Visceral Adipose Tissue Proteins between Metabolically Healthy and Unhealthy Obese Patients

  • Alfadda, Assim A.;Masood, Afshan;Al-Naami, Mohammed Y.;Chaurand, Pierre;Benabdelkamel, Hicham
    • Molecules and Cells
    • /
    • 제40권9호
    • /
    • pp.685-695
    • /
    • 2017
  • Obesity and the metabolic disorders that constitute metabolic syndrome are a primary cause of morbidity and mortality in the world. Nonetheless, the changes in the proteins and the underlying molecular pathways involved in the relevant pathogenesis are poorly understood. In this study a proteomic analysis of the visceral adipose tissue isolated from metabolically healthy and unhealthy obese patients was used to identify presence of altered pathway(s) leading to metabolic dysfunction. Samples were obtained from 18 obese patients undergoing bariatric surgery and were subdivided into two groups based on the presence or absence of comorbidities as defined by the International Diabetes Federation. Two dimensional difference in-gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was carried out. A total of 28 proteins were identified with a statistically significant difference in abundance and a 1.5-fold change (ANOVA, $p{\leq}0.05$) between the groups. 11 proteins showed increased abundance while 17 proteins were decreased in the metabolically unhealthy obese compared to the healthy obese. The differentially expressed proteins belonged broadly to three functional categories: (i) protein and lipid metabolism (ii) cytoskeleton and (iii) regulation of other metabolic processes. Network analysis by Ingenuity pathway analysis identified the $NF{\kappa}B$, IRK/MAPK and PKC as the nodes with the highest connections within the connectivity map. The top network pathway identified in our protein data set related to cellular movement, hematological system development and function, and immune cell trafficking. The VAT proteome between the two groups differed substantially between the groups which could potentially be the reason for metabolic dysfunction.

Immunohistochemical Expression of Caspase 3 and Its Relationship with p53 Expression in Endometrial Cancers

  • 이경은
    • 대한의생명과학회지
    • /
    • 제16권4호
    • /
    • pp.307-310
    • /
    • 2010
  • Apoptosis is an important significance in the pathogenesis of cancer. Caspase 3 and p53 have been identified as important members of the apoptosis related proteins. This study was performed to define roles of caspase 3 expression and its relationship with p53 expression in endometrial cancers by immunohistochemistry. Immunoreactivity for caspase 3 was found in 13 (65.0%) out of 20 endometrial hyperplasia cases and 8 (36.4%) out of 22 endometrial cancers. Seven (87.5%) of the 8 cases with a positive caspase 3 immunoreactivity showed a positive p53 expression in 22 endometrial cancers. There were no significant associations between caspase 3 and p53 expressions. These findings suggest that caspase 3 expression might be associated with carcinogenesis of endometrial cancers. Further studies are needed to define the relationship between caspase 3 and p53 and apoptosis for examining the mechanisms of tissue-specific apoptosis related protein.

Clinical Manifestations of Inborn Errors of the Urea Cycle and Related Metabolic Disorders during Childhood

  • Endo, Fumio;Matsuura, Toshinobu;Yanagita, Kaede;Matsuda, Ichiro
    • 대한유전성대사질환학회지
    • /
    • 제5권1호
    • /
    • pp.76-87
    • /
    • 2005
  • Various disorders cause hyperammonemia during childhood. Amongthem are those caused by inherited defects in urea synthesis and related metabolic pathways. These disorders can be grouped into two types: disorders of the enzymes that comprise the urea cycle, and disorders of the transporters or metabolites of theamino acids related to the urea cycle. Principal clinical features of these disorders are caused by elevated levels of blood ammonium. Additional disease-specific symptoms are related to the particular metabolic defect. These specific clinical manifestations are often due to an excess or lack of specific amino acids. Treatment of urea cycle disorders and related metabolic diseases consists of nutritional restriction of proteins, administration of specific amino acids, and use of alternative pathways for discarding excess nitrogen. Although combinations of these treatments are extensively employed, the prognosis of severe cases remains unsatisfactory. Liver transplantation is one alternative for which a better prognosis is reported.

  • PDF

Infection with Citrobacter rodentium in μMT Knockout Mice

  • Jo, Minjeong;Hwang, Soonjae;Rhee, Ki-Jong
    • 대한의생명과학회지
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2018
  • ${\mu}MT$ knockout mice are genetically deficient in the transmembrane domain of mu chain of the immunoglobulin M (IgM) heavy chain, resulting in the absence of mature B cells. ${\mu}MT$ knockout mice is an in vivo model system used to clarify the role of B cells in various diseases. Enteropathogenic Escherichia coli (EPEC) induces acute and chronic diarrheal disease, especially in children of developing countries. The formation of attaching and effacing (A/E) lesion is a prominent pathogenic factor in the intestinal epithelium of EPEC infection. The A/E lesion is modulated by genes located on the pathogenic island locus of enterocyte effacement (LEE) which encode a type III secretion system (T3SS) and A/E lesion-related effector proteins. Citrobacter rodentium is a murine pathogen utilized in studying the pathogenic mechanisms of EPEC in human infections. Citrobacter rodentium produce A/E lesion to attach to intestinal epithelium, thus providing a murine model pathogen to study EPEC. Several studies have investigated the pathogenesis of Citrobacter rodentium in the ${\mu}MT$ knockout mice. In this review, we introduce the ${\mu}MT$ murine model in the context of C. rodentium pathogenesis and describe in detail the role of B cells and antibodies in this disease.

Quantitative Changes of Plant Defense Enzymes in Biocontrol of Pepper (Capsicium annuum L.) Late Blight by Antagonistic Bacillus subtilis HJ927

  • LEE HYUN-JIN;PARK KEUN-HYUNG;SHIM JAE-HAN;PARK RO-DONG;KIM YONG-WOONG;CHO JEUNG-YONG;HWANGBO HOON;KIM YOUNG-CHEOL;CHA GYU-SUK;KRISHNAN HARI B.;KIM KIL-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.1073-1079
    • /
    • 2005
  • To investigate plant protection, pathogenesis-related (PR) proteins and plant defense enzymes related to cell wall lignification were studied in pepper plants inoculated with antagonistic Bacillus subtilis HJ927 and pathogenic strain Phytophthora capsici. Phytophthora blight disease was reduced by $53\%$ in pepper roots when preinoculated with B. subtilis HJ927 against P. capsici. The activities of PR proteins (chitinase and ${\beta}$-1,3,-glucanase) and defense-related enzymes (peroxidase, polyphenoloxidase, and phenylalanine ammonia lyase) decreased in roots of B. subtilis+P capsid-treated plants, but increased in leaves with time. The decrease and increase were much greater in P. capsici-treated plants than in B. subtilis HJ927+P capsici-treated plants, although P. capsici-treated plants had more severe damage. Therefore, changes of enzyme activities do not seem to be directly related to plant protection. We suggest that the change of these enzymes in pathogen-treated plants may be related to plant response rather than to resistance against pathogen attacks.

Next generation sequencing 방법을 이용한 적육계 복숭아와 백육계 복숭아의 전사체 분석 (Comparison of transcriptome analysis between red flash peach cultivar and white flash peach cultivar using next generation sequencing)

  • 김세희;남은영;조강희;신일섭;김현란;황해성
    • Journal of Plant Biotechnology
    • /
    • 제39권4호
    • /
    • pp.273-280
    • /
    • 2012
  • Differences of gene expression between red flash peach cultivar and white flash peach cultivar were investigated by Nest-generation sequencing (NGS). EST from the red flash peach cultivar and white flash peach cultivar were selected for nucleotide sequence determination and homology searches. The levels of transcripts coding for proteins involved in pathogenesis related proteins, temperature stress, ethylene signal pathway were significantly higher in white flash peach cultivar than in red flash peach cultivar. On the other hand, the up-regulation of proteins involved in anthocyanin and flavonol biosynthesis and protein degradation and sorbitol metabolism were observed in red flash peach cultivar. Chalcone synthase was preferentially expressed in the red flesh peach cultivar, agreeing with the accumulation of anthocyanin and expression of other previously identified genes for anthocyanin biosynthesis. Anthocyanin pathway related genes CHS, F3H, DFR, LDOX, UFGT differentially expressed between red flash peach cultivar and white flash peach cultivar. These results suggest that red flash peach cultivar and white flash peach cultivar have different anthocyanin biosynthesis regulatory mechanisms.

Light/Dark Responsiveness of Kinetin-Inducible Secondary Metabolites and Stress Proteins in Rice Leaf

  • Cho, Kyoung-Won;Kim, Dea-Wook;Jung, Young-Ho;Shibato, Junko;Tamogami, Shigeru;Yonekura, Masami;Jwa, Nam-Soo;Kubo, Akihiro;Agrawal, Ganesh Kumar;Rakwal, Randeep
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권2호
    • /
    • pp.112-116
    • /
    • 2007
  • Kinetin(KN) is an inducer of rice(Oryza sativa L.) defense/stress responses, as evidenced by the induction of inducible secondary metabolite and defense/stress protein markers in leaf. We show a novel light-dependent effect of KN-triggered defense stress responses in rice leaf. Leaf segments treated with KN(100 ${\mu}M$) show hypersensitive-like necrotic lesion formation only under continuous light illumination. Potent accumulation of two phytoalexins, sakuranetin and momilactone A(MoA) by KN that peaks at 48 h after treatment under continuous light is completely suppressed by incubation under continuous dark. Using two-dimensional gel electrophoresis we identified KN-induced changes in ribulose-1, 5-bisphosphate carboxylase/oxygenase, energy- and pathogenesis-related proteins(OsPR class 5 and 10 members) by N-terminal amino acid sequencing and mass spectrometry. These changes were light-inducible and could not be observed in the dark(and control). Present results provide a new dimension(light modulation/regulation) to our finding that KN has a potential role in the rice plant self-defense mechanism.

  • PDF

Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease

  • Park, Ga Hyun;Park, Joon Hyung;Chung, Kwang Chul
    • BMB Reports
    • /
    • 제54권12호
    • /
    • pp.592-600
    • /
    • 2021
  • Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the elderly population and is caused by the loss of dopaminergic neurons. PD has been predominantly attributed to mitochondrial dysfunction. The structural alteration of α-synuclein triggers toxic oligomer formation in the neurons, which greatly contributes to PD. In this article, we discuss the role of several familial PD-related proteins, such as α-synuclein, DJ-1, LRRK2, PINK1, and parkin in mitophagy, which entails a selective degradation of mitochondria via autophagy. Defective changes in mitochondrial dynamics and their biochemical and functional interaction induce the formation of toxic α-synuclein-containing protein aggregates in PD. In addition, these gene products play an essential role in ubiquitin proteasome system (UPS)-mediated proteolysis as well as mitophagy. Interestingly, a few deubiquitinating enzymes (DUBs) additionally modulate these two pathways negatively or positively. Based on these findings, we summarize the close relationship between several DUBs and the precise modulation of mitophagy. For example, the USP8, USP10, and USP15, among many DUBs are reported to specifically regulate the K48- or K63-linked de-ubiquitination reactions of several target proteins associated with the mitophagic process, in turn upregulating the mitophagy and protecting neuronal cells from α-synuclein-derived toxicity. In contrast, USP30 inhibits mitophagy by opposing parkin-mediated ubiquitination of target proteins. Furthermore, the association between these changes and PD pathogenesis will be discussed. Taken together, although the functional roles of several PD-related genes have yet to be fully understood, they are substantially associated with mitochondrial quality control as well as UPS. Therefore, a better understanding of their relationship provides valuable therapeutic clues for appropriate management strategies.