• Title/Summary/Keyword: Pathogen Concentration

Search Result 226, Processing Time 0.024 seconds

Effect of quercetin on the production of nitric oxide in murine macrophages stimulated with lipopolysaccharide from Prevotella intermedia

  • Cho, Yun-Jung;Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.4
    • /
    • pp.191-197
    • /
    • 2013
  • Purpose: Nitric oxide (NO) is a short-lived bioactive molecule that is known to play an important role in the pathogenesis of periodontal disease. In the current study, we investigated the effect of the flavonoid quercetin on the production of NO in murine macrophages activated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen related to inflammatory periodontal disease, and tried to elucidate the underlying mechanisms of action. Methods: LPS was isolated from P. intermedia ATCC 25611 cells by the standard hot phenol-water method. The concentration of NO in cell culture supernatants was determined by measuring the accumulation of nitrite. Inducible NO synthase (iNOS) and heme oxygenase-1 (HO-1) protein expression, phosphorylation of c-Jun N-terminal kinase (JNK) and p38, inhibitory ${\kappa}B$ $(I{\kappa}B)-{\alpha}$ degradation, and signal transducer and activator of transcription 1 (STAT1) phosphorylation were analyzed via immunoblotting. Results: Quercetin significantly attenuated iNOS-derived NO production in RAW246.7 cells activated by P. intermedia LPS. In addition, quercetin induced HO-1 protein expression in cells activated with P. intermedia LPS. Tin protoporphyrin IX (SnPP), a competitive inhibitor of HO-1, abolished the inhibitory effect of quercetin on LPS-induced NO production. Quercetin did not affect the phosphorylation of JNK and p38 induced by P. intermedia LPS. The degradation of $I{\kappa}B-{\alpha}$ induced by P. intermedia LPS was inhibited when the cells were treated with quercetin. Quercetin also inhibited LPS-induced STAT1 signaling. Conclusions: Quercetin significantly inhibits iNOS-derived NO production in murine macrophages activated by P. intermedia LPS via anti-inflammatory HO-1 induction and inhibition of the nuclear factor-${\kappa}B$ and STAT1 signaling pathways. Our study suggests that quercetin may contribute to the modulation of host-destructive responses mediated by NO and appears to have potential as a novel therapeutic agent for treating inflammatory periodontal disease.

Inhibitory Effects of Serotonin Derivatives on Adipogenesis (홍화씨 추출물 유래 세로토닌 유도체의 지방전구세포 분화억제 효능에 대한 연구)

  • Jung, Eun-Sun;Kim, Seung-Beom;Kim, Moo-Han;Shin, Seong-Woo;Lee, Jong-Sung;Park, Deok-Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.2
    • /
    • pp.171-176
    • /
    • 2011
  • N-feruloylserotonin (FS) and N-(pcoumaroyl) serotonin (CS), serotonin derivatives, which have been isolated as major and unique phenolics of safflower seed extract (SSE), are member of hydroxycinnamic acid amides and are implicated in the defense against pathogen infection and insect feeding. In this study, we evaluate inhibitory effects of N-(p-Coumaroyl)serotonin and N-Feruloylserotonin on adipogenesis using oil-red O staining, triglyceride and GPDH activity. we found that while serotonin itself did not suppress differentiation of preadipocytes into adipocytes, N-(p-Coumaroyl)serotonin and N-Feruloylserotonin inhibited the differentiation of preadipocytes into adipocytes in a concentration-dependent manner. In addition, they showed antioxidant effects in DPPH assay. Taken together, these results show that N-feruloylserotonin (FS) and N-(pcoumaroyl) serotonin (CS) suppress differentiation of preadipocytes, suggesting the possibility that these serotonin derivatives can be utilized as an anti-obesity agent.

Synergistic Interactions of Schizostatin Identified from Schizophyllum commune with Demethylation Inhibitor Fungicides

  • Park, Min Young;Jeon, Byeong Jun;Kang, Ji Eun;Kim, Beom Seok
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.579-590
    • /
    • 2020
  • Botrytis cinerea, which causes gray mold disease in more than 200 plant species, is an economically important pathogen that is mainly controlled by synthetic fungicides. Synergistic fungicide mixtures can help reduce fungicide residues in the environment and mitigate the development of fungicide-resistant strains. In this study, we screened microbial culture extracts on Botrytis cinerea to identify an antifungal synergist for tebuconazole. Among the 4,006 microbial extracts screened in this study, the culture extract from Schizophyllum commune displayed the most enhanced activity with a sub-lethal dosage of tebuconazole, and the active ingredient was identified as schizostatin. In combination with 5 ㎍/ml tebuconazole, schizostatin (1 ㎍/ml) showed disease control efficacy against gray mold on tomato leaf similar to that achieved with 20 ㎍/ml tebuconazole treatment alone. Interestingly, schizostatin showed demethylation inhibitor (DMI)-specific synergistic interactions in the crossed-paper strip assay using commercial fungicides. In a checkerboard assay with schizostatin and DMIs, the fractional inhibitory concentration values were 0.0938-0.375. To assess the molecular mechanisms underlying this synergism, the transcription levels of the ergosterol biosynthetic genes were observed in response to DMIs, schizostatin, and their mixtures. Treatment with DMIs increased the erg11 (the target gene of DMI fungicides) expression level 15.4-56.6-fold. However, treatment with a mixture of schizostatin and DMIs evidently reverted erg11 transcription levels to the pre-DMI treatment levels. These results show the potential of schizostatin as a natural antifungal synergist that can reduce the dose of DMIs applied in the field without compromising the disease control efficacy of the fungicides.

Effect of Crop Rotation System on Soil Chemical Properties and Ginseng Root Rot after Harvesting Ginseng (인삼 연작지에서 윤작물 작부체계가 토양화학성 및 인삼뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Lee, Seung Ho;Park, Kyung Hoon;Jang, In Bok;Jin, Mei Lan;Seo, Moon Won
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.244-251
    • /
    • 2017
  • Background: The application of crop rotation systems may reduce the occurrence of soil-borne diseases by releasing allelochemicals and by subsequent microbial decomposition. Methods and Results: For reduction of ginseng root rot by the crop rotation system, after harvesting 6-year-old ginseng, fresh ginseng was grown along with continuous cultivation of sweet potato, peanut, and bellflower. Growth of 2-year-old ginseng was significantly inhibited in the continuous cultivation than in the first cultivation. Sweet potato, peanut and bellflower cultivations assisted in obtaining normal yields of ginseng in the first year after the harvest of 6-year-old ginseng. Salt concentration, potassium and sodium contents were gradually decreased, and, organic matter was gradually increased through cirp rotation. Phosphate, calcium and magnesium contents were not altered. The density of the root rot fungus was gradually decreased by the increase in crop rotation; however it was decreased distinctly in the first year compared to the second and third year. The severity of root rot disease tended to decrease gradually by the increase of crop rotation. Conclusions: Short-term crop rotation for three years promoted the growth of ginseng, however root rot infection was not inhibited significantly, although it was somewhat effective in lowering the density of the root rot pathogen.

Isolation and Characterization of a Novel Bacterium, Bacillus subtilis HR-1019, with Insoluble Phosphates Solubilizing Activity (인산가용화 활성을 갖는 바실러스 서브틸리스 HR-1019 분리와 특성)

  • Lee, Yong-Suk;Park, Dong-Ju;Kim, Jae Hoon;Kim, Hyeong Seok;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.242-248
    • /
    • 2013
  • The objective of this study was to develop a mineral phosphate-solubilizing bacterium as a biofertilizer. A mineral phosphate-solubilizing bacterium HR-1019 was isolated from cultivated soils. It was identified as Bacillus subtilis by 16S rDNA analysis. The phosphate-solubilizing activities of the HR-1019 strain against three types of insoluble phosphate, hydroxyapatite, tri-calcium phosphate, and aluminum phosphate were quantitatively determined. When 5% of glucose concentration was used as a carbon source, the strain showed marked mineral phosphate-solubilizing activity. Mineral phosphate solubilization was directly related to pH drop in the culture solution of the strain. The pathogenic activity and antifungal effects of the HR-1019 strain were measured inclear zones formed in PDA media.

Gold Nanoparticles Conjugation Enhances Antiacanthamoebic Properties of Nystatin, Fluconazole and Amphotericin B

  • Anwar, Ayaz;Siddiqui, Ruqaiyyah;Shah, Muhammad Raza;Khan, Naveed Ahmed
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.171-177
    • /
    • 2019
  • Parasitic infections have remained a significant burden on human and animal health. In part, this is due to lack of clinically-approved, novel antimicrobials and a lack of interest by the pharmaceutical industry. An alternative approach is to modify existing clinically-approved drugs for efficient delivery formulations to ensure minimum inhibitory concentration is achieved at the target site. Nanotechnology offers the potential to enhance the therapeutic efficacy of drugs through modification of nanoparticles with ligands. Amphotericin B, nystatin, and fluconazole are clinically available drugs in the treatment of amoebal and fungal infections. These drugs were conjugated with gold nanoparticles. To characterize these gold-conjugated drug, atomic force microscopy, ultraviolet-visible spectrophotometry and Fourier transform infrared spectroscopy were performed. These drugs and their gold nanoconjugates were examined for antimicrobial activity against the protist pathogen, Acanthamoeba castellanii of the T4 genotype. Moreover, host cell cytotoxicity assays were accomplished. Cytotoxicity of these drugs and drug-conjugated gold nanoparticles was also determined by lactate dehydrogenase assay. Gold nanoparticles conjugation resulted in enhanced bioactivity of all three drugs with amphotericin B producing the most significant effects against Acanthamoeba castellanii (p < 0.05). In contrast, bare gold nanoparticles did not exhibit antimicrobial potency. Furthermore, amoebae treated with drugs-conjugated gold nanoparticles showed reduced cytotoxicity against HeLa cells. In this report, we demonstrated the use of nanotechnology to modify existing clinically-approved drugs and enhance their efficacy against pathogenic amoebae. Given the lack of development of novel drugs, this is a viable approach in the treatment of neglected diseases.

Role of Trehalose Synthesis in Ralstonia syzygii subsp. indonesiensis PW1001 in Inducing Hypersensitive Response on Eggplant (Solanum melongena cv. Senryo-nigou)

  • Laili, Nur;Mukaihara, Takafumi;Matsui, Hidenori;Yamamoto, Mikihiro;Noutoshi, Yoshiteru;Toyoda, Kazuhiro;Ichinose, Yuki
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.566-579
    • /
    • 2021
  • Ralstonia syzygii subsp. indonesiensis (Rsi, former name: Ralstonia solanacearum phylotype IV) PW1001, a causal agent of potato wilt disease, induces hypersensitive response (HR) on its non-host eggplant (Solanum melongena cv. Senryo-nigou). The disaccharide trehalose is involved in abiotic and biotic stress tolerance in many organisms. We found that trehalose is required for eliciting HR on eggplant by plant pathogen Rsi PW1001. In R. solanacearum, it is known that the OtsA/OtsB pathway is the dominant trehalose synthesis pathway, and otsA and otsB encode trehalose-6-phosphate (T6P) synthase and T6P phosphatase, respectively. We generated otsA and otsB mutant strains and found that these mutant strains reduced the bacterial trehalose concentration and HR induction on eggplant leaves compared to wild-type. Trehalose functions intracellularly in Rsi PW1001 because addition of exogenous trehalose did not affect the HR level and ion leakage. Requirement of trehalose in HR induction is not common in R. solanacearum species complex because mutation of otsA in Ralstonia pseudosolanacearum (former name: Ralstonia solanacearum phylotype I) RS1002 did not affect HR on the leaves of its non-host tobacco and wild eggplant Solanum torvum. Further, we also found that each otsA and otsB mutant had reduced ability to grow in a medium containing NaCl and sucrose, indicating that trehalose also has an important role in osmotic stress tolerance.

Anti-Biofilm Effects of Torilis japonica Ethanol Extracts Against Staphylococcus aureus

  • Kim, Geun-Seop;Park, Chae-Rin;Kim, Ji-Eun;Kim, Hong-Kook;Kim, Byeong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.220-227
    • /
    • 2022
  • The spread of antibiotic-resistant strains of Staphylococcus aureus, a gram-positive opportunistic pathogen, has increased due to the frequent use of antibiotics. Inhibition of the quorum-sensing systems of biofilm-producing strains using plant extracts represents an efficient approach for controlling infections. Torilis japonica is a medicinal herb showing various bioactivities; however, no studies have reported the anti-biofilm effects of T. japonica extracts against drug-resistant S. aureus. In this study, we evaluated the inhibitory effects of T. japonica ethanol extract (TJE) on biofilm production in methicillin-sensitive S. aureus (MSSA) KCTC 1927, methicillin-resistant S. aureus (MRSA) KCCM 40510, and MRSA KCCM 40511. Biofilm assays showed that TJE could inhibit biofilm formation in all strains. Furthermore, the hemolysis of sheep blood was found to be reduced when the strains were treated with TJE. The mRNA expression of agrA, sarA, icaA, hla, and RNAIII was evaluated using reverse transcription-polymerase chain reaction to determine the effect of TJE on the regulation of genes encoding quorum sensing-related virulence factors in MSSA and MRSA. The expression of hla reduced in a concentration-dependent manner upon treatment with TJE. Moreover, the expression levels of other genes were significantly reduced compared to those in the control group. In conclusion, TJE can suppress biofilm formation and virulence factor-related gene expression in MSSA and MRSA strains. The extract may therefore be used to develop treatments for infections caused by antibiotic-resistant S. aureus.

Biological Control Potential of Penicillium brasilianum against Fire Blight Disease

  • Kim, Yeong Seok;Ngo, Men Thi;Kim, Bomin;Han, Jae Woo;Song, Jaekyeong;Park, Myung Soo;Choi, Gyung Ja;Kim, Hun
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.461-471
    • /
    • 2022
  • Erwinia amylovora is a causative pathogen of fire blight disease, affecting apple, pear, and other rosaceous plants. Currently, management of fire blight relies on cultural and chemical practices, whereas it has been known that few biological resources exhibit disease control efficacy against the fire blight. In the current study, we found that an SFC20201208-M01 fungal isolate exhibits antibacterial activity against E. amylovora TS3128, and the isolate was identified as a Penicillium brasilianum based on the 𝛽-tubulin (BenA) gene sequence. To identify active compounds from the P. brasilianum culture, the culture filtrate was partitioned with ethyl acetate and n-butanol sequentially. From the ethyl acetate layer, we identified two new compounds (compounds 3-4) and two known compounds (compounds 1-2) based on spectroscopic analyses and comparison with literature data. Of these active compounds, penicillic acid (1) exhibited promising antibacterial activity against E. amylovora TS3128 with a minimal inhibitory concentration value of 25 ㎍/ml. When culture filtrate and penicillic acid (125 ㎍/ml) were applied onto Chinese pearleaf crab apple seedlings prior to inoculation of E. amylovora TS3128, the development of fire blight disease was effectively suppressed in the treated plants. Our results provide new insight into the biocontrol potential of P. brasilianum SFC20201208-M01 with an active ingredient to control fire blight.

Antiviral effects of various plant extracts against viral haemorrhagic septicaemia virus (VHSV) (바이러스성출혈성패혈증바이러스에 대한 식물 추출물의 항바이러스 효능 탐색)

  • Park, Ji-Yoon;Kim, Hyoung Jun;Choi, Hye-Sung;Kwon, Se Ryun
    • Journal of fish pathology
    • /
    • v.35 no.1
    • /
    • pp.41-46
    • /
    • 2022
  • Since viral haemorrhagic septicaemia virus (VHSV) was first reported in European rainbow trout (Oncorhynchus mykiss) in the 1930s, it has caused high prices in freshwater and saltwater fish around the world, causing enormous economic damage to the aquaculture industry. We have been seeking required countermeasures against viruses because of economic damage to the aquaculture industry. However, commercial vaccines have the limitations of being costly to use in farms and being effective to only one pathogen. The aquaculture industry these days is taking on new alternatives to vaccines, antibiotics and chemicals. In this study, the suitability of antiviral effects against VHSV was evaluated in vitro for various plant extracts to judge their effectiveness. Atriplex gmelinii, Ixeris repens, Arctium lappa, and Sargassum coreanum were tested to know the correlation between the amount of virus and the concentration of extract investigates if these extracts have antiviral effects. Virus and extracts at various concentrations were inoculated simultaneously as 1:1 ratio into EPC cell lines. There are no antiviral effects with Atriplex gmelinii, Ixeris repens and Arctium lappa. Extract of Sargassum coreanum only has the antiviral activity in a dose-dependent manner. These results show that extract of Sargassum coreanum can be used in aquaculture industry as an antiviral materials.