• Title/Summary/Keyword: Path-Based Equivalent Circuit(PBEC)

Search Result 2, Processing Time 0.018 seconds

Novel Power Bus Design Method for High-Speed Digital Boards (고속 디지털 보드를 위한 새로운 전압 버스 설계 방법)

  • Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.23-32
    • /
    • 2006
  • Fast and accurate power bus design (FAPUD) method for multi-layers high-speed digital boards is devised for the power supply network design tool for accurate and precise high speed board. FAPUD is constructed, based on two main algorithms of the PBEC (Path Based Equivalent Circuit) model and the network synthesis method. The PBEC model exploits simple arithmetic expressions of the lumped 1-D circuit model from the electrical parameters of a 2-D power distribution network. The circuit level design based on PBEC is carried with the proposed regional approach. The circuit level design directly calculates and determines the size of on-chip decoupling capacitors, the size and the location of off-chip decoupling capacitors, and the effective inductances of the package power bus. As a design output, a lumped circuit model and a pre-layout of the power bus including a whole decoupling capacitors are obtained after processing FAPUD. In the tuning procedure, the board re-optimization considering simultaneous switching noise (SSN) added by I/O switching can be carried out because the I/O switching effect on a power supply noise can be estimated over the operation frequency range with the lumped circuit model. Furthermore, if a design changes or needs to be tuned, FAPUD can modify design by replacing decoupling capacitors without consuming other design resources. Finally, FAPUD is accurate compared with conventional PEEC-based design tools, and its design time is 10 times faster than that of conventional PEEC-based design tools.

Design and Analysis of Digital Circuit System Considering Power Distribution Networks (파워 분배망을 고려한 디지털 회로 시스템의 설계와 분석)

  • Lee, Sang-Min;Moon, Gyu;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.4
    • /
    • pp.15-22
    • /
    • 2004
  • This paper presents the channel analysis considering power distribution network(PDN) system of PCB. For achieve the target PDN system we proposed the useful design approach for acquiring the characteristic target of power distribution network in overall frequency ranges. The proposed method is based on the hierarchical approach related to frequency ranges and the path-based equivalent circuit model to consider the interference of the current paths between the decoupling capacitors and the board through it is a lumped model for fast and easy calculation, experimental results show that the proposed model is almost as precise as the numerical analysis. The analysis of PDN system shows that although the effective inductance of package dominatly affects the power noise and the signal transfer through data channel, the board PDNs also can not be neglected for achieving the accurate channel signaling. Therefore, we must design concurrently the chip, package, and board from the initial spec design of high speed digital system.