• Title/Summary/Keyword: Path trajectory

Search Result 354, Processing Time 0.028 seconds

로봇의 최적 시간 제어에 관한 연구

  • 정년수;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.301-305
    • /
    • 2001
  • Conventionally, robot control algorithms are divided into two stages, namely, path or trajectory planning and path tracking(or path control). This division has been adopted mainly as a means of alleviating difficulties in dealing with complex, complex, coupled manipulator dynamics. The minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known. In path planning, DP is applied to applied to find the shortest path form initial position to final position with the assumptions that there is no obstacle and that each path is straight line. In path control, the phase plane technique is applied to the minimum-time control with the assumptions that the bound on each actuator torque is a function of joint position and velocity or constant. This algorithm can be used for any manipulator that has rigid link, known dynamics equations of motion, and joint angles that can be determined at a given position on the path.

Obstacle Avoidance and Path Planning for a Mobile Robot Using Single Vision System and Fuzzy Rule (모노비전과 퍼지규칙을 이용한 이동로봇의 경로계획과 장애물회피)

  • 배봉규;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.274-277
    • /
    • 2000
  • In this paper we propose new algorithms of path planning and obstacle avoidance for an autonomous mobile robot with vision system. Distance variation is included in path planning to approach the target point and avoid obstacles well. The fuzzy rules are also applied to both trajectory planning and obstacle avoidance to improve the autonomy of mobile robot. It is shown by computer simulation that the proposed algorithm is working well.

  • PDF

A minimum-time trajectory planning for dual robot system using running start (초기속도 부가에 의한 두 대의 로보트 시스템의 최소시간 경로계획)

  • 이지홍;문점생
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.423-427
    • /
    • 1993
  • A velocity planning method is proposed that ensures collision-free and minimal delay-time motions for two robotic manipulators and auxiliary equipments. Additional path, which makes robot start with possible largest speed, is added to the original prescribed path of one of two robots, and this running start along the additional path reduces delay time introduced to avoid collision between the robots and therefore reduces total traveling time.

  • PDF

Robust Trajectory Tracking Control of a Mobile Robot Based on Weighted Integral PDC and T-S Fuzzy Disturbance Observer (하중 적분 PDC와 T-S 퍼지 외란 관측기를 이용한 이동 로봇의 강인 궤도 추적 제어)

  • Baek, Du-san;Yoon, Tae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.265-276
    • /
    • 2017
  • In this paper, a robust and more accurate trajectory tracking control method for a mobile robot is proposed using WIPDC(Weighted Integral Parallel Distributed Compensation) and T-S Fuzzy disturbance observer. WIPDC reduces the steady state error by adding weighted integral term to PDC. And, T-S Fuzzy disturbance observer makes it possible to estimate and cancel disturbances for a T-S fuzzy model system. As a result, the trajectory tracking controller based on T-S Fuzzy disturbance observer shows robust tracking performance. When the initial postures of a mobile robot and the reference trajectory are different, the initial control inputs to the mobile robot become too large to apply them practically. In this study, also, the problem is solved by designing an initial approach path using a path planning method which employs $B\acute{e}zier$ curve with acceleration limits. Performances of the proposed method are proved from the simulation results.

Passage Planning in Coastal Waters for Maritime Autonomous Surface Ships using the D* Algorithm

  • Hyeong-Tak Lee;Hey-Min Choi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.3
    • /
    • pp.281-287
    • /
    • 2023
  • Establishing a ship's passage plan is an essential step before it starts to sail. The research related to the automatic generation of ship passage plans is attracting attention because of the development of maritime autonomous surface ships. In coastal water navigation, the land, islands, and navigation rules need to be considered. From the path planning algorithm's perspective, a ship's passage planning is a global path-planning problem. Because conventional global path-planning methods such as Dijkstra and A* are time-consuming owing to the processes such as environmental modeling, it is difficult to modify a ship's passage plan during a voyage. Therefore, the D* algorithm was used to address these problems. The starting point was near Busan New Port, and the destination was Ulsan Port. The navigable area was designated based on a combination of the ship trajectory data and grid in the target area. The initial path plan generated using the D* algorithm was analyzed with 33 waypoints and a total distance of 113.946 km. The final path plan was simplified using the Douglas-Peucker algorithm. It was analyzed with a total distance of 110.156 km and 10 waypoints. This is approximately 3.05% less than the total distance of the initial passage plan of the ship. This study demonstrated the feasibility of automatically generating a path plan in coastal navigation for maritime autonomous surface ships using the D* algorithm. Using the shortest distance-based path planning algorithm, the ship's fuel consumption and sailing time can be minimized.

Flexible Robot Manipulator Path Design and Application of Perturbation Adaptive Control to Reduce Residual Vibration (잔류진동 감소를 위한 탄성 로봇 매니퓨레이터 경로설계 및 섭동적응제어의 적용)

  • Park, K.J.
    • Journal of Power System Engineering
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2003
  • A method is presented for generating the path which significantly reduces residual vibration of a flexible robot manipulator and applying control theory to track the desired path. The desired path is optimally designed so that the system completes the required move with minimum residual vibration. A closed loop control theory is applied to track the planned path in the case of load variation. Specifically, it is desired that the optimally designed path has a better trajectory tracking capabilities during the residual vibration over the cycloidal path, in various cases of load. Perturbation adaptive control is used as closed loop control scheme. A planar two link manipulator is used to evaluate this method.

  • PDF

A Study on the Trajectory Control of a Autonomous Mobile Robot (자율이동로봇을 위한 경로제어에 관한 연구)

  • Cho, Sung-Bae;Park, Kyung-Hun;Lee, Yang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2417-2419
    • /
    • 2001
  • A path planning is one of the main subjects in a mobile robot. It is divided into two parts. One is a global path planning and another is a local path planning. This paper, using the formal two methods, presents that the mobile robot moves to multi-targets with avoiding unknown obstacles. For the shortest time and the lowest cost, the mobile robot has to find a optimal path between targets. To find a optimal global path, we used GA(Genetic Algorithm) that has advantage of optimization. After finding the global path, the mobile robot has to move toward targets without a collision. FLC(Fuzzy Logic Controller) is used for local path planning. FLC decides where and how faster the mobile robot moves. The validity of the study that searches the shortest global path using GA in multi targets and moves to targets without a collision using FLC, is verified by simulations.

  • PDF

A Study on the Mandibular Movements in the Patients with TMJ Lock Closed (악관절 폐구성 과두걸림 환자의 하악운동에 관한 연구)

  • Ji-Won Lee;Sung-Chang Chung
    • Journal of Oral Medicine and Pain
    • /
    • v.15 no.1
    • /
    • pp.79-89
    • /
    • 1991
  • The author examined the patterns and various ranges of mandibular movements in TMJ lock closed patients in the frontal, sagittal and horizontal plane and obtained the following results. 1. In the frontal trajectory, the mean amount of maximum mouth opening was 24.4mm and the opening paths were deviated to the affected side in 87.1% of the patients. The mean amount of maximum laterotrusion to the affected side was 10.4mm and that of non-affected side was 7.5mm. There was a significant difference between them(p<0.001). 2. In the sagittal trajectory, the mean amount of the maximum protrusion was 7.0mm, the mean amount of the maximal retrusion was 1.0mm 3. In the horizontal trajectory, the pattern of laterotrusion showed asymmetry: the mean length of non-affected side was smaller than that of the affected side. Protrusive path were deviated to the affected side in 64.5% of the patients, the mean degree of deviation was 16.4$^{\circ}$. The mandibular movements of TMJ lock-closed patients can be characterized by decreased range of mouth opening, protrusive movement, and laterotrusive movement to the non-affected side and also characterized by deviated opening and protrusive path to the affected side.

  • PDF

Compensating the Elliptical Trajectory of Elliptical Vibration Cutting Device (타원궤적 진동절삭기의 타원궤적 보정)

  • Loh, Byoung-Gook;Kim, Gi-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.789-795
    • /
    • 2011
  • In elliptical vibration cutting (EVC), cutting performance is largely affected by the shape of an elliptical path of the cutting tool. In this study, two parallel piezoelectric actuators were used to make an elliptical vibration cutting device. When harmonic voltages of $90^{\circ}$ out-of-phase are supplied to the EVC device, creation of an ideal elliptical trajectory whose major and minor axes are parallel to the cutting and thrust directions is anticipated from a kinematic analysis of the EVC device, however, the paths we experimentally observed showed significant distortions in its shape ranging from skew to excessive elongation of the major axis of the ellipse. To compensate distortions, an analytical model describing the elliptical path of the cutting tool was developed and verified with experimental results, and based on the analytical model, the distorted elliptical paths created at 100 Hz, 1 kHz, and 16 kHz were corrected for skew and elongation.

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.