• 제목/요약/키워드: Path navigation

검색결과 686건 처리시간 0.029초

Design of path tracking controller for mobile robot

  • Lee, Joo-Ho;Seo, Sam-Jun;Seo, Ho-Joon;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.464-467
    • /
    • 1995
  • Autonomous Mobile Robot(AMR) is a field of study which is under active research along with rapid development of the engineering technology. The main reasons for the high interest in AMR are because of its ability to change work space freely and its capability to replace human being for difficult and dangerous jobs. Also the fact that AMR provides a variety of research fields, such as path planning, navigation algorithm, sensor fusion, image processing, and controller design is part of the reason for its popularity. But relatively few researches are concerned with controller. So in this paper, a control strategy of mobile robot with nonholonomic constraint for tracking ordered discontinuous motion is proposed. The proposed control strategy has been designed as a state feedback shape to allow the AMR to obtain continuous velocity and track the path which is composed of discontinuous motions. In order to design such controller, 3 states have been reduced to 2 states through coordinate projection. These ideas are tested for validity through simulation and simulation result is compared with experiments result.

  • PDF

동적 경로 선정을 위한 효율적인 탐색 기법 (An Efficient Search Mechanism for Dynamic Path Selection)

  • 최경미;박화진;박영호
    • 디지털콘텐츠학회 논문지
    • /
    • 제13권3호
    • /
    • pp.451-457
    • /
    • 2012
  • 최근, ITS(Intelligent Transportation Systems)의 개발과 함께 차량용 내비게이션의 실시간 교통 정보를 이용하는 수요가 급증하면서, 경로탐색의 중요성이 더욱 가속화되고 있다. 그러나 기존의 경로탐색 알고리즘의 대부분은 최단경로 탐색을 위한 알고리즘으로, 정적인 거리 및 운행 시간정보를 사용하여 최적 경로를 계산하여 운전자에게 제공하기 때문에 교통량에 따라 동적으로 변하는 현 시점에서의 최적의 경로를 제공하지 못하는 문제가 있다. 따라서 본 논문에서는 이를 해결하기 위해 감속률과 거리에 기반한 동적 경로 선정을 위한 의미적 최단거리 알고리즘(Semantic Shortest Path algorithm with Reduction ratio & Distance, SSP_RD)과 감속률과 거리에 기반한 이동 경로 예측 모형화 및 동적 이동 경로 링크 맵을 제안한다.

GPS와 비전시스템을 이용한 무인 골프카의 자율주행 (Autonomous Traveling of Unmanned Golf-Car using GPS and Vision system)

  • 정병묵;여인주;조지승
    • 한국정밀공학회지
    • /
    • 제26권6호
    • /
    • pp.74-80
    • /
    • 2009
  • Path tracking of unmanned vehicle is a basis of autonomous driving and navigation. For the path tracking, it is very important to find the exact position of a vehicle. GPS is used to get the position of vehicle and a direction sensor and a velocity sensor is used to compensate the position error of GPS. To detect path lines in a road image, the bird's eye view transform is employed, which makes it easy to design a lateral control algorithm simply than from the perspective view of image. Because the driving speed of vehicle should be decreased at a curved lane and crossroads, so we suggest the speed control algorithm used GPS and image data. The control algorithm is simulated and experimented from the basis of expert driver's knowledge data. In the experiments, the results show that bird's eye view transform are good for the steering control and a speed control algorithm also shows a stability in real driving.

포텐셜함수(Potential Function)를 이용한 자율주행로봇들간의 충돌예방을 위한 주행제어 알고리즘의 개발 (Development of Potential-Function Based Motion Control Algorithm for Collision Avoidance Between Multiple Mobile Robots)

  • 이병룡
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.107-115
    • /
    • 1998
  • A path planning using potential field method is very useful for the real-time navigation of mobile robots. However, the method needs high modeling cost to calculate the potential field because of complex preprocessing, and mobile robots may get stuck into local minima. In this paper, An efficient path planning algorithm for multiple mobile robots, based on the potential field method, was proposed. In the algorithm. the concepts of subgoals and obstacle priority were introduced. The subgoals can be used to escape local minima, or to design and change the paths of mobile robots in the work space. In obstacle priority, all the objects (obstacles and mobile robots) in the work space have their own priorities, and the object having lower priority should avoid the objects having higher priority than it has. In this paper, first, potential based path planning method was introduced, next an efficient collision-avoidance algorithm for multiple mobile robots, moving in the obstacle environment, was proposed by using subgoals and obstacle priority. Finally, the developed algorithm was demonstrated graphically to show the usefulness of the algorithm.

  • PDF

등각 사상을 이용한 인체 아바타의 장애물 회피 경로 생성에 관한 연구 (A Study on Obstacle-Free Path Generation of Avatar using Conformal Mapping)

  • 김종성;도준형;박광현;김정배;송경준;변증남
    • 전자공학회논문지CI
    • /
    • 제38권1호
    • /
    • pp.7-18
    • /
    • 2001
  • 본 논문에서는 가상 공간상에서 아바타가 이동할 때 자율적으로 장애물을 회피할 수 있는 새로운 방법으로 등각 사상 방법을 이용한다. 먼저, 원형으로 근사화되는 장애물을 대상으로 하여 회피 경로를 생성하는 방법을 보이고, 타원형이나 다수의 장애물에 대한 회피 경로 생성 방법으로 확장한다. 그리고 마지막으로 중간 경로점을 이용한 전역경로계획 방법과 등각 사상을 이용한 장애물 회피 경로 생성 방법을 통합 시켜 전체 환경에서 자연스러운 아바타의 이동 경로를 생성하는· 방법을 제안한다.

  • PDF

컴퓨터 게임 환경에서 일반화 가시성 그래프를 이용한 경로찾기 (Path-finding by using generalized visibility graphs in computer game environments)

  • 유견아;전현주
    • 한국시뮬레이션학회논문지
    • /
    • 제14권3호
    • /
    • pp.21-31
    • /
    • 2005
  • In state-of-the-art games, characters can move in a goal-directed manner so that they can move to the goal position without colliding obstacles. Many path-finding methods have been proposed and implemented for these characters and most of them use the A* search algorithm. When .the map is represented with a regular grid of squares or a navigation mesh, it often takes a long time for the A* to search the state space because the number of cells used In the grid or the mesh increases for higher resolution. Moreover the A* search on the grid often causes a zigzag effect, which is not optimal and realistic. In this paper we propose to use visibility graphs to improve the search time by reducing the search space and to find the optimal path. We also propose a method of taking into account the size of moving characters in the phase of planning to prevent them from colliding with obstacles as they move. Simulation results show that the proposed method performs better than the grid-based A* algorithm in terms of the search time and space and that the resulting paths are more realistic.

  • PDF

Rmap+: Autonomous Path Planning for Exploration of Mobile Robot Based on Inner Pair of Outer Frontiers

  • Buriboev, Abror;Kang, Hyun Kyu;Lee, Jun Dong;Oh, Ryumduck;Jeon, Heung Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권10호
    • /
    • pp.3373-3389
    • /
    • 2022
  • Exploration of mobile robot without prior data about environments is a fundamental problem during the SLAM processes. In this work, we propose improved version of previous Rmap algorithm by modifying its Exploration submodule. Despite the previous Rmap's performance which significantly reduces the overhead of the grid map, its exploration module costs a lot because of its rectangle following algorithm. To prevent that, we propose a new Rmap+ algorithm for autonomous path planning of mobile robot to explore an unknown environment. The algorithm bases on paired frontiers. To navigate and extend an exploration area of mobile robot, the Rmap+ utilizes the inner and outer frontiers. In each exploration round, the mobile robot using the sensor range determines the frontiers. Then robot periodically changes the range of sensor and generates inner pairs of frontiers. After calculating the length of each frontiers' and its corresponding pairs, the Rmap+ selects the goal point to navigate the robot. The experimental results represent efficiency and applicability on exploration time and distance, i.e., to complete the whole exploration, the path distance decreased from 15% to 69%, as well as the robot decreased the time consumption from 12% to 86% than previous algorithms.

확률론에 기반한 점자블록 추종 알고리즘 및 센서장치의 개발 (Development of Sensor Device and Probability-based Algorithm for Braille-block Tracking)

  • 노치원;이성하;강성철;홍석교
    • 제어로봇시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.249-255
    • /
    • 2007
  • Under the situation of a fire, it is difficult for a rescue robot to use sensors such as vision sensor, ultrasonic sensor or laser distance sensor because of diffusion, refraction or block of light and sound by dense smoke. But, braille blocks that are installed for the visaully impaired at public places such as subway stations can be used as a map for autonomous mobile robot's localization and navigation. In this paper, we developed a laser sensor stan device which can detect braille blcoks in spite of dense smoke and integrated the device to the robot developed to carry out rescue mission in various hazardous disaster areas at KIST. We implemented MCL algorithm for robot's attitude estimation according to the scanned data and transformed a braille block map to a topological map and designed a nonlinear path tracking controller for autonomous navigation. From various simulations and experiments, we could verify that the developed laser sensor device and the proposed localization method are effective to autonomous tracking of braille blocks and the autonomous navigation robot system can be used for rescue under fire.

Virtual Network Embedding with Multi-attribute Node Ranking Based on TOPSIS

  • Gon, Shuiqing;Chen, Jing;Zhao, Siyi;Zhu, Qingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.522-541
    • /
    • 2016
  • Network virtualization provides an effective way to overcome the Internet ossification problem. As one of the main challenges in network virtualization, virtual network embedding refers to mapping multiple virtual networks onto a shared substrate network. However, existing heuristic embedding algorithms evaluate the embedding potential of the nodes simply by the product of different resource attributes, which would result in an unbalanced embedding. Furthermore, ignoring the hops of substrate paths that the virtual links would be mapped onto may restrict the ability of the substrate network to accept additional virtual network requests, and lead to low utilization rate of resource. In this paper, we introduce and extend five node attributes that quantify the embedding potential of the nodes from both the local and global views, and adopt the technique for order preference by similarity ideal solution (TOPSIS) to rank the nodes, aiming at balancing different node attributes to increase the utilization rate of resource. Moreover, we propose a novel two-stage virtual network embedding algorithm, which maps the virtual nodes onto the substrate nodes according to the node ranks, and adopts a shortest path-based algorithm to map the virtual links. Simulation results show that the new algorithm significantly increases the long-term average revenue, the long-term revenue to cost ratio and the acceptance ratio.

퍼스널 로봇을 위한 운동과 이동 성능평가 기술의 개발 (Development of Evaluation Technique of Mobility and Navigation Performance for Personal Robots)

  • 안창현;김진오;이건영;이호길;김규로
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권2호
    • /
    • pp.85-92
    • /
    • 2003
  • In this paper, we propose a method to evaluate performances of mobile personal robots. A set of performance measures is proposed and the corresponding evaluation methods are developed. Different from industrial manipulators, personal robots need to be evaluated with its mobility, navigation, task and intelligent performance in environments where human beings exist. The proposed performance measures are composed of measures for mobility including vibration, repeatability, path accuracy and so on, as well as measures for navigation performance including wall following, overcoming doorsill, obstacle avoidance and localization. But task and intelligent behavior performances such as cleaning capability and high-level decision-making are not considered in this paper. To measure the proposed performances through a series of tests, we designed a test environment and developed measurement systems including a 3D Laser tracking system, a vision monitoring system and a vibration measurement system. We measured the proposed performances with a mobile robot to show the result as an example. The developed systems, which are installed at Korea Agency for Technology and Standards, are going to be used for many robot companies in Korea.