• Title/Summary/Keyword: Path navigation

Search Result 685, Processing Time 0.023 seconds

Modified A* Algorithm for Obstacle Avoidance for Unmanned Surface Vehicle

  • Vo, Anh Hoa;Yoon, Hyeon Kyu;Ryu, Jaekwan;Jin, Taekseong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.510-517
    • /
    • 2019
  • Efficient path planning is essential for unmanned surface vehicle (USV) navigation. The A* algorithm is an effective algorithm for identifying a safe path with optimal distance cost. In this study, a modified version of the A* algorithm is applied for planning the path of a USV in a static and dynamic obstacle environment. The current study adopts the A* approach while maintaining a safe distance between the USV and obstacles. Two important parameters-path length and computational time-are considered at various start times. The results demonstrate that the modified approach is effective for obstacle avoidance by a USV that is compliant with the International Regulations for Preventing Collision at Sea (COLREGs).

Comparision and Analysis of Algorithm for web Sites Researching (웹 사이트 탐색 알고리즘 비교분석)

  • 김덕수;권영직
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.3
    • /
    • pp.91-98
    • /
    • 2003
  • Visitors who browse the web from wireless PDAs, cell phones are frequently frustrated by interfaces. Simply replacing graphics with text and reformatting tables does not solve this problem, because deep link structures can still require more time. To solve this problem, in the paper we propose an algorithm, Minimal Path Algorithm that automatically improves wireless web navigation by suggesting useful shortcut links in real time. In the result of this paper, Minimal Path algorithm offer the shortcut and the number of shortest links to web users.

  • PDF

Path finding via VRML and VISION overlay for Autonomous Robotic (로봇의 위치보정을 통한 경로계획)

  • Sohn, Eun-Ho;Park, Jong-Ho;Kim, Young-Chul;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.527-529
    • /
    • 2006
  • In this paper, we find a robot's path using a Virtual Reality Modeling Language and overlay vision. For correct robot's path we describe a method for localizing a mobile robot in its working environment using a vision system and VRML. The robt identifies landmarks in the environment, using image processing and neural network pattern matching techniques, and then its performs self-positioning with a vision system based on a well-known localization algorithm. After the self-positioning procedure, the 2-D scene of the vision is overlaid with the VRML scene. This paper describes how to realize the self-positioning, and shows the overlap between the 2-D and VRML scenes. The method successfully defines a robot's path.

  • PDF

A Maximum Likelihood Method of Code Tracking Loop Using Matched Filter in Multi-path Channel (다중경로 채널에서 정합필터를 이용한 코드 추적 루프최대 우도 알고리즘)

  • Son, Seung-Ho;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.54-57
    • /
    • 2010
  • The navigation system like GPS which is core technology is based on Code Division Multiple Access(CDMA) techniques. To receive satellite signal smoothly in CDMA, received signals have to synchronize with spread code. In this paper, we focus on the code tracking methods among synchronization techniques. The conventional delay lock loop(DLL) is unsuitable for multi-path channel. We will introduce how it overcomes distortion by multi-path. We will propose method that separates out multi-path signals and tracks the each path signals. And we will confirm performance of proposed method using Spirent simulator.

Obstacles modeling method in cluttered environments using satellite images and its application to path planning for USV

  • Shi, Binghua;Su, Yixin;Zhang, Huajun;Liu, Jiawen;Wan, Lili
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.202-210
    • /
    • 2019
  • The obstacles modeling is a fundamental and significant issue for path planning and automatic navigation of Unmanned Surface Vehicle (USV). In this study, we propose a novel obstacles modeling method based on high resolution satellite images. It involves two main steps: extraction of obstacle features and construction of convex hulls. To extract the obstacle features, a series of operations such as sea-land segmentation, obstacles details enhancement, and morphological transformations are applied. Furthermore, an efficient algorithm is proposed to mask the obstacles into convex hulls, which mainly includes the cluster analysis of obstacles area and the determination rules of edge points. Experimental results demonstrate that the models achieved by the proposed method and the manual have high similarity. As an application, the model is used to find the optimal path for USV. The study shows that the obstacles modeling method is feasible, and it can be applied to USV path planning.

Survey on Developing Path Planning for Unmanned Aerial Vehicles (무인비행체 경로계획 기술 동향)

  • Y.S. Kwon;J.H. Cha
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.4
    • /
    • pp.10-20
    • /
    • 2024
  • Recent advancements in autonomous flight technologies for Unmanned Aerial Vehicles (UAVs) have greatly expanded their applicability for various tasks, including delivery, agriculture, and rescue. This article presents a comprehensive survey of path planning techniques in autonomous navigation and exploration that are tailored for UAVs. The robotics literature has studied path and motion planning, from basic obstacle avoidance to sophisticated algorithms capable of dynamic decision-making in challenging environments. In this article, we introduce popular path and motion planning approaches such as grid-based, sampling-based, and optimization-based planners. We further describe the contributions from the state-of-the-art in exploration planning for UAVs, which have been derived from these well-studied planners. Recent research, including the method we are developing, has improved performance in terms of efficiency and scalability for exploration tasks in challenging environments without human intervention. On the basis of these research and development trends, this article discusses future directions in UAV path planning technologies, illustrating the potential for UAVs to perform complex tasks with increased autonomy and efficiency.

Development of a Velocity Ellipse Navigation Algorithm in Virtual Environments Using Force Feedback (힘 반향을 이용한 속도타원 가상환경 네비게이션 알고리즘 개발)

  • Yoon I.B.;Chai Y.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.277-285
    • /
    • 2004
  • In this paper, a 2 DOF haptic yawing joystick for use as the navigation input device in virtual environments is introduced. The haptic yawing joystick has 360° range for yawing motion and ±100° for pitching motion. The device can support weights of up to 26N for χ axis and 10N for axis with 10kHz of sampling rate. The size of the haptic yawing joystick is so small that it can be assembled on armrest of an arm chair and has relatively larger work space than other conventional 2 DOF joysticks. For the haptic yawing joystick, an ellipse navigation algorithm using the user's velocity in the virtual navigation is proposed. The ellipse represents the velocity of the user. According to the velocity of the navigator, the ellipse size is supposed to be changed. Since the path width of navigation environments is limited, the ellipse size is also limited. The ellipse navigation algorithm is tested in 2 dimensional virtual environments. The test results show that the average velocity of the navigation with the algorithm is faster than the average navigation velocity without the algorithm.

Development of the Optimized Autonomous Navigation Algorithm for the Unmanned Vehicle using Extended Kalman Filter (확장형 칼만필터를 이용한 무인 자동차의 자율항법 최적화 알고리즘 개발)

  • Yun, Duk-Sun;Yu, Hwan-Shin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.7-14
    • /
    • 2008
  • Unmanned vehicle has a performance for finding the path and the way point by itself, so called orientation and direction. For the more precise navigation performance, Extended kalman filter, which is integrated with inertial navigation system and global positioning system is proposed in this paper. Extended kalman filter's performance is evaluated by the simulation and applied to the unmanned vehicle. The test result shows the effectiveness of Extended kalman filter for the navigation.

Extended kalman filter design for autonomous navigation with GPS and INS sensor system fusion (GPS와 INS의 센서융합을 이용한 자율항법용 확장형 칼만필터 설계)

  • Yun, Duk-Sun;Yu, Hwan-Shin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.294-300
    • /
    • 2007
  • Autonomous unmanned vehicle is able to find the path and the way point by itself. For the more precise navigation performance, Extended kalman filter, which is integrated with inertial navigation system and global positioning system is proposed in this paper. Extended kalman filter's performance is evaluated by the simulation and applied to the unmanned vehicle. The test result shows the effectiveness of extended kalman filter for the navigation.

Research of the Architecture of Indoor Navigation System based on Mobile Device (모바일 기기에서의 실내 네비게이션 시스템 아키텍쳐의 연구)

  • Jin, Liang;Zhou, Jian;Lee, Yeon;Bae, Hae-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.173-175
    • /
    • 2012
  • To spread the incredible experience of wandering around a building, we propose the architecture of indoor navigation system based on inter-floor. Firstly, we combine trilateration method with Fingerprint Positioning Algorithm for positioning and Dijkstra Algorithm for calculating paths. Then the system can get the user's current locations and provide relevant paths according to the user's choice. Moreover, it can also provide the navigation path which takes the inter-floor information into consideration. It breaks the traditional navigation based on planar graph and has abundant business value.

  • PDF