• 제목/요약/키워드: Path loss model

Search Result 220, Processing Time 0.027 seconds

A Realistic Path Loss Model for Real-time Communication in the Urban Grid Environment for Vehicular Ad hoc Networks

  • Mostajeran, Ehsan;Noor, Rafidah Md;Anisi, Mohammad Hossein;Ahmedy, Ismail;Khan, Fawad Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4698-4716
    • /
    • 2017
  • Wireless signal transmission is influenced by environmental effects. These effects have also been challenging for Vehicular Ad hoc Network (VANET) in real-time communication. More specifically, in an urban environment, with high mobility among vehicles, a vehicle's status from the transmitter can instantly trigger from line of sight to non-line of sight, which may cause loss of real-time communication. In order to overcome this, a deterministic signal propagation model is required, which has less complexity and more feasibility of implementation. Hence, we propose a realistic path loss model which adopts ray tracing technique for VANET in a grid urban environment with less computational complexity. To evaluate the model, it is applied to a vehicular simulation scenario. The results obtained are compared with different path loss models in the same scenario based on path loss value and application layer performance analysis. The proposed path loss model provides higher loss value in dB compared to other models. Nevertheless, the performance of vehicle-vehicle communication, which is evaluated by the packet delivery ratio with different vehicle transmitter density verifies improvement in real-time vehicle-vehicle communication. In conclusion, we present a realistic path loss model that improves vehicle-vehicle wireless real-time communication in the grid urban environment.

The Study on Empirical Propagation Path Loss in the Airport Cargo Terminal Environment (공항 화물터미널 환경에서 실험적인 패스 로스에 관한 연구)

  • Kim, Kyung-Tae;Park, Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1140-1147
    • /
    • 2013
  • In this paper, The path loss model of Air Traffic Control(ATC) telecommunication radio channel has been studied at the Incheon International Airport(IIA) Cargo Terminal. We measured one frequency among VHF channel bands. The transmitting site was located at different locations with different heights. The transmitting site radiated the Continuous Wave(CW). The propagation measurement was taken using the moving vehicle equipped with receiver and antenna. The transmitting power, frequency and antenna height are the same as the current operating condition. The path loss exponent and intercept parameters were extracted by the basic path loss model and hata model. The path loss exponent at IIA Cargo terminal area were 3.67 and 3.39 respectively in first and second transmitting sites. The deviation of prediction error is 14.42 and 10.38. The new path loss equation at the IIA Cargo terminal area was also developed using the derived path loss parameters. The new path loss was compared with other models. This result will be helpful for the ATC site selection and service quality evaluation.

Radio map fingerprint algorithm based on a log-distance path loss model using WiFi and BLE (WiFi와 BLE 를 이용한 Log-Distance Path Loss Model 기반 Fingerprint Radio map 알고리즘)

  • Seong, Ju-Hyeon;Gwun, Teak-Gu;Lee, Seung-Hee;Kim, Jeong-Woo;Seo, Dong-hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.62-68
    • /
    • 2016
  • The fingerprint, which is one of the methods of indoor localization using WiFi, has been frequently studied because of its ability to be implemented via wireless access points. This method has low positioning resolution and high computational complexity compared to other methods, caused by its dependence of reference points in the radio map. In order to compensate for these problems, this paper presents a radio map designed algorithm based on the log-distance path loss model fusing a WiFi and BLE fingerprint. The proposed algorithm designs a radio map with variable values using the log-distance path loss model and reduces distance errors using a median filter. The experimental results of the proposed algorithm, compared with existing fingerprinting methods, show that the accuracy of positioning improved by from 2.747 m to 2.112 m, and the computational complexity reduced by a minimum of 33% according to the access points.

An Interference Analysis Method with Site-Specific Path Loss Model for Wireless Personal Area Network

  • Moon, Hyun-Wook;Kwon, Se-Woong;Lee, Jong-Hyun;Yoon, Young-Joong
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.290-295
    • /
    • 2010
  • In this paper, an interference analysis method with a site-specific path loss model for a wireless personal area network (WPAN) is proposed. The site-specific path loss model is based on geometrical optics and geometric probability to consider both site-specific radio propagation characteristics and a closed-form expression to obtain the mean interference from which the uniformly distributed multiple interferers are derived. Therefore, the proposed interference analysis method can achieve more computational simplicity than the Monte-Carlo (MC) simulation, which uses the ray-tracing (RT) technique. In addition, better accuracy than the conventional interference analysis model that uses stochastic method can also be achieved. To evaluate the proposed method, a signal to the interference-noise ratio with a mean interference concept for uniformly distributed interferers is calculated and compared in two simulation scenarios. As a result, the proposed method produces not only better matched results with the MC simulation using the RT technique than the conventional interference analysis model, but also simpler and faster calculation, which is due to the site-specific path loss model and closed-form expression for interference calculation.

Measurement and analysis of indoor corridor propagation path loss in 5G frequency band (5G 주파수 대역에서의 실내 복도 전파 경로손실 측정 및 분석)

  • Kim, Hyeong Jung;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.688-693
    • /
    • 2022
  • In this paper, channel propagation path loss was measured in building corridors for frequency bands of 3.7 GHz and 28 GHz, which are used in 5G mobile communication, and compared and analyzed with CI (Close-In) and FI (Floating-Intercept) channel models. To measure the propagation path loss, the measurement was performed while moving the receiver (Rx) from the transmitter (Tx) by 10 m. As a result of the measurement, the PLE (Path Loss Exponent) values of the CI model at 3.7 GHz and 28 GHz were 1.5293 and 1.7795, respectively, and the standard deviations were analyzed as 9.1606 and 8.5803, respectively. In the FI model, 𝛼 values were 79.5269 and 70.2012, 𝛽 values were -0.6082 and 1.2517, respectively, and the standard deviations were 5.8113 and 4.4810, respectively. In the analysis results through the CI model and the FI model, the standard deviation of the FI model is smaller than that of the CI model, so it can be seen that the FI model is similar to the actual measurement result.

A Study on the Predictive Model of Propagation Path Loss in Millimeter-Wave Band (밀리미터파 대역에서 전파경로손실 예측 모델)

  • Kim, Song-Min
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.2
    • /
    • pp.23-28
    • /
    • 2005
  • This study was to suggest the propagation path loss and predictive model of propagation path analysis in order to apply the frequency in the millimeter-wave band to the real time inter-vehicle communication system. This study was to suppose the case of inter-vehicle communication on the one-way two-lanes road in the big cites with a lot of traffic jams in order to analyze the effect by the reflected wave of multipath. As a simulation of suggested model, it found out that the propagation path by the reflected wave was about 0.1[m]$\sim$5.1[m] longer than the one by the direct wave during the transmission of 100[m] wave direct path. Also, as a result of comparing the propagation path loss, the loss would be about -0.8[dB]$\sim$-4.2[dB] larger in case of wall reflection and -0.8[dB]$\sim$-1[dB] vehicle reflection. From the result above, this researcher found out that the path loss of reflected wave produced by the walls was about -3.2[dB] larger than the path loss produced by the adjacent vehicles.

An Empirical Indoor Path Loss Model for Ultra-Wideband Channels

  • Ghassemzadeh, Saeed-S.;Greenstein, Larry-J.;Kavcic, Aleksandar;Sveinsson, Thorvardur;Tarokh, Vahid
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.303-308
    • /
    • 2003
  • We present a statistical model for the path loss of ultrawideband (UWB) channels in indoor environments. In contrast to our previously reported measurements, the data reported here are for a bandwidth of 6GHz rather than 1.25GHz; they encompass commercial buildings in addition to single-family homes (20 of each); and local spatial averaging is included. As before, the center frequency is 5.0GHz. Separate models are given for commercial and residential environments and, within each category, for lineof sight (LOS) and non-line-of-sight (NLS) paths. All four models have the same mathematical structure, differing only in their numerical parameters. The two new models (LOS and NLS) for residences closely match those derived from the previous measurements, thus affirming the stability of our path loss modeling. We find, also, that the path loss statistics for the two categories of buildings are quite similar.

Path Loss Characteristics of TETRA-based KTX Train Radio Propagation (TETRA 기반 고속철도 열차무선의 전파 경로손실 특성)

  • Bae, Sung-Ho;Choi, Kyu-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2985-2991
    • /
    • 2013
  • Train radio system has been constructed in the second stage of Kyung-bu high speed railway adopting TETRA(Terrestial trunk radio) standard at 851MHz frequency band. The base stations of the train radio system should be located along railway track to ensure seamless communication between train and wayside taking the path loss of train radio propagation into consideration. This paper provides a quantitative analysis of the path loss characteristics based on the measurement results of the train radio propagation along the high speed railway. The free space propagation model and Okumura-Hata model are generally used for base station design, but they predicted 10dB lower or 20dB higher than the measured path loss. Linear regression of the field measured data by applying the log-distance model shows path loss exponent is in the 2.8-3.2 range, which can be used to predict the path loss of the train radio propagation.

LOS and NLOS Path-loss Characteristics at 3.4, 5.3, and 6.4 ㎓ in an Urban Environment (3.4, 5.3, 6.4 ㎓ 대역 신호의 가시 및 비가시 구간에서의 경로손실 특성)

  • 조한신;박병성;육종관;박한규;이정수
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.127-131
    • /
    • 2002
  • This paper presents the a measured path-loss characteristics in urban line-of-sight(LOS) and non line-of-sight(NLOS) environments for 3.4, 5.3, and 6.4 ㎓ band signals. A two-ray model is applied to analyse the path-loss characteristics in LOS areas. In LOS areas, an empirical break point, whose distance is shorter than a theorical break point, is founded. Further, a sudden power level drop occurs at a transition point from LOS region to NLOS area and different path-loss exponents are occured various cases. The power level drop due to comer loss and path-loss exponents both increase as the distance between the transmitter and the corner increases.

  • PDF

A Study on the Path Loss Modeling for Mobile Cellular System (이동통신대역의 경로손실 모델 설정에 관한 연구)

  • 박경태;정인성;김동일
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.726-731
    • /
    • 2002
  • The purpose of this paper is to analyze the path loss for the mobile cellular system. The maximum distance is 150 km and the area is about 6,000 $\textrm{km}^2$ and the field test was performed for the total 5 base stations. The path loss was calculated by Hata and Okumura models, respectively. As a result, it was shown that a proper model for the field test data is the middle one between the rural model and suburban/rural Hata model.