• Title/Summary/Keyword: Path Optimization

Search Result 638, Processing Time 0.026 seconds

Feedrate Optimization Using CL Surface (공구경로 곡면을 이용한 이송속도 최적화)

  • 김수진;정태성;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.39-47
    • /
    • 2004
  • In mold machining, there are many concave machining regions where chatter and tool deflection occur since MRR(material removal rate) increases as curvature increases even though cutting speed and depth of cut are constant. Boolean operation between stock and tool model is widely used to compute MRR in NC milling simulation. In finish cutting, the side step is reduced to about 0.3mm and tool path length is sometimes over loom, so Boolean operation takes long computation time and includes much error if the resolution of stock and tool model is larger than the side step. In this paper, curvature of CL (cutter location) surface and side step of tool path is used to compute the feedrate for constant MRR machining. The data structure of CL surface is Z-map generated from NC tool path. The algorithm to get local curvature from discrete data was developed and applied to compute local curvature of CL surface. The side step of tool path was computed by point density map which includes cutter location point density at each grid element. The feedrate computed from curvature and side step is inserted to new tool path to regulate MRR. The resultants were applied to feedrate optimization system which generates new tool path with feedrate from NC codes for finish cutting. The system was applied to the machining of speaker and cellular phone mold. The finishing time was reduced to 12.6%, tool wear was reduced from 2mm to 1.1mm and chatter marks and over cut on corner were reduced, compared to the machining by constant feedrate. The machining time was shorter to 17% and surface quality and tool was also better than the conventional federate regulation using curvature of the tool path.

Optimization of the Path of Inner Reinforcement for an Automobile Hood Using Design Sensitivity Analysis (설계민감도해석을 이용한 자동차후드 보강경로 최적설계)

  • Lee, Tae-Hui;Lee, Dong-Gi;Gu, Ja-Gyeom;Han, Seok-Yeong;Im, Jang-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.62-68
    • /
    • 2000
  • Optimization technique to find a path of an inner reinforcement of an automobile hood is proposed by using design sensitivity informations. The strength and modal characteristics of the automobile hood are analyzed and their design sensitivity analyses with respect to the thickness are carried out using MSC/NASTRAN. Based on the design sensitivity analysis, determination of design variables and response functions is discussed. Techniques improving design from design sensitivity informations are suggested and the double-layer method is newly proposed to optimize the path of stiffener for a shell structure, Using the suggested method, we redesign a new inner reinforcement of an automobile hood and compare the responses with the original design. It is confirmed that new design improved in the frequency responses without the weight increasement.

General evolutionary path for fundamental natural frequencies of structural vibration problems: towards optimum from below

  • Zhao, Chongbin;Steven, G.P.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.513-527
    • /
    • 1996
  • In this paper, both an approximate expression and an exact expression for the contribution factor of an element to the natural frequency of the finite element discretized system of a structure in general and a membrane in particular have been derived from the energy conservation principle and the finite element formulation of structural eigenvalue problems. The approximate expression for the contribution factor of an element is used to predict and determine the elements to be removed in an iteration since it depends only on the quantities associated with the old system in the iteration. The exact expression for the contribution factor of an element makes it possible to check whether the element is correctly removed at the end of an iteration because it depends on both the old system and the new system in the iteration. Thus, the combined use of the approximate expression and the exact expression allows a considerable number of elements to be removed in a single iteration so that the efficiency of the evolutionary structural optimization method can be greatly improved for solving the natural frequency optimization problem of a structure. A square membrane with different boundary supports has been chosen to investigate the general evolutionary path for the fundamental natural frequency of the structure. The related results indicated that if the objective of a structural optimization is to raise the fundamental natural frequency of the structure to an optimal value, the general evolutionary path during its optimization is that the elements are gradually removed along the direction from the area surrounded by the contour of the highest value to that surrounded by the contour of the lowest value.

Optimal Path Planning for UAVs under Multiple Ground Threats (다수 위협에 대한 무인항공기 최적 경로 계획)

  • Kim, Bu-Seong;Bang, Hyo-Chung;Yu, Chang-Gyeong;Jeong, Eul-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.74-80
    • /
    • 2006
  • This paper addresses the trajectory optimization of Unmanned Aerial Vehicles(UAVs) under multiple ground threats like enemy's anti-air radar sites. The power of radar signal reflected by the vehicle and the flight time are considered in the performance cost to be minimized. The bank angle is regarded as control input for a 1st-order lag vehicle, and input parameter optimization method based on Sequential Quadratic Programming (SQP) is used for trajectory optimization. The proposed path planning method provides more practical trajectories with enhanced survivability than those of Voronoi diagram method.

Finding Optimal Small Networks by Mathematical Programming Models (수리계획 모형을 이용한 최적의 작은 네트워크 찾기)

  • Choi, Byung-Joo;Lee, Hee-Sang
    • IE interfaces
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • In this paper we study the Minimum Edge Addition Problem(MEAP) to decrease the diameter of a graph. MEAP can be used for improving the serviceability of telecommunication networks with a minimum investment. MEAP is an NP-hard optimization problem. We present two mathematical programming models : One is a multi-commodity flow formulation and the other is a path partition formulation. We propose a branch-and-price algorithm to solve the path partition formulation to the optimality. We develop a polynomial time column generation sub-routine conserving the mathematical structure of a sub problem for the path partition formulation. Computational experiments show that the path partition formulation is better than the multi-commodity flow formulation. The branch-and-price algorithm can find the optimal solutions for the immediate size graphs within reasonable time.

Contour Parallel Tool-Path Linking Algorithm For Pocketing (포켓가공을 위한 오프셋 공구경로 연결 알고리즘)

  • 박상철;정연찬
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.3
    • /
    • pp.169-173
    • /
    • 2001
  • Presented in this paper is a CPO tool-path linking procedure optimizing technological objectives, such as dealing with islands (positive and negative) and minimizing tool retractions, drilling holes and slotting. Main features of the proposed algorithm are as follows; 1) a data structure, called a 'TPE-net', is devised to provide information on the parent/child relationships among the tool-path-elements, 2) the number of tool retractions is minimized by a 'tool-path-element linking algorithm'fading a tour through the TPE-net, and 3) the number of drilling holes is minimized by making use of the concept of the 'free space'.

  • PDF

Flow Path Design of Large Steam Turbines Using An Automatic Optimization Strategy (최적화 기법을 이용한 대형 증기터빈 유로설계)

  • Im, H.S.;Kim, Y.S.;Cho, S.H.;Kwon, G.B.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.771-776
    • /
    • 2001
  • By matching a well established fast throughflow code, with standard loss correlations, and an efficient optimization algorithm, a new design system has been developed, which optimizes inlet and exit flow-field parameters for each blade row of a multistage axial flow turbine. The compressible steady state inviscid throughflow code based on streamline curvature method is suitable for fast and accurate flow calculation and performance prediction of a multistage axial flow turbine. A general purpose hybrid constrained optimization package, iSIGHT has been used, which includes the following modules: genetic algorithm, simulated annealing, modified method of feasible directions. The design system has been demonstrated using an example of a 5-stage low pressure steam turbine for 800MW thermal power plant previously designed by HANJUNG. The comparison of computed performance of initial and optimized design shows significant improvement in the turbine efficiency.

  • PDF

Hyper-parameter Optimization for Monte Carlo Tree Search using Self-play

  • Lee, Jin-Seon;Oh, Il-Seok
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.36-43
    • /
    • 2020
  • The Monte Carlo tree search (MCTS) is a popular method for implementing an intelligent game program. It has several hyper-parameters that require an optimization for showing the best performance. Due to the stochastic nature of the MCTS, the hyper-parameter optimization is difficult to solve. This paper uses the self-playing capability of the MCTS-based game program for optimizing the hyper-parameters. It seeks a winner path over the hyper-parameter space while performing the self-play. The top-q longest winners in the winner path compete for the final winner. The experiment using the 15-15-5 game (Omok in Korean name) showed a promising result.

Time-optimal motions of robotic manipulators with constraints (제한조건을 가진 로봇 매니퓰레이터에 대한 최적 시간 운동)

  • 정일권;이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.293-298
    • /
    • 1993
  • In this paper, methods for computing the time-optimal motion of a robotic manipulator are presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem can be reduced to a search for the time-optimal path in the n-dimensional position space. These paths are further optimized with a local path optimization to yield a global optimal solution. Time-optimal motion of a robot with an articulated arm is presented as an example.

  • PDF